全國中小學科展

工程學

陶瓷燒成新技術- 以家用微波爐及自製集熱盒燒製高溫陶瓷之研究Research on firing high temperature ceramics with household microware oven and self-made heat collection box

本研究以家用微波爐及自製集熱盒燒製高溫陶瓷,用於家用微波爐的集熱盒材料的材質以玻璃纖維為主體為佳,集熱材料使用碳化矽顆粒級配重量比為1:3(320目碳化矽:180目碳化矽) 有最佳的微波吸熱效率並半浸泡的方式沾黏3.02mm (10層)最好;集熱盒玻璃纖維與集熱材料碳化矽之間的高溫黏著劑,以體積比3:7(矽酸鈉:水)為最佳配比。以家用微波爐搭配自製集熱盒可於26.5分鐘便可燒結陶瓷上釉作品,與傳統電窯需480分鐘比較可大幅減少94.48%的燒製時間,且其耗費的能源可省去89.44%的電費,以家用微波爐及自製集熱盒燒製之陶瓷品與傳統電窯燒製之陶瓷品在洛式硬度儀上測試結果無明顯差異,是未來極具發展性的陶瓷燒成技術。

Using P.I.P. to strengthen roads: Plastic incinerated by plastic

People have become accustomed to single-use plastics. These are plastics that are used once only and are then thrown away or recycled. A piece of plastic can only be recycled 2-3 times before it is of bad quality and can no longer be of use. (Achyut K. Panda, 2019). Plastic waste fills up landfills and oceans, becoming hazardous and harmful to wildlife, while emitting greenhouse gasses. Alternatives, such as metal straws and paper bags have turned out inefficient and plastic is still a great need in society. Another way of getting rid of waste plastic is to burn it. Fossil fuels such as coal and natural gas are being utilised to burn plastic in industry. This causes many harmful emissions, such as carbon dioxide and carbon monoxide released from burning the plastic. It results in more damage being done than just leaving the plastic in a landfill. These emissions can be cleaned before being released into the atmosphere. Plastic is made of petroleum, so when it is burned it is converted back into a fuel. Plastic can be burned under controlled conditions to create a fuel source that can be used, thereby utilising the waste plastic. The research conducted aims to investigate the use of plastic waste to burn other plastic to create a renewable fuel source and to eliminate plastic waste.

Automated Inflation and Pressure Regulation for Recreational and Professional Cyclists

Cycling is a very popular mode of transport as well as a famous sport around the world. Many people enjoy this sport either professionally or recreationally. Cycling in the UK alone has grown up to 200% since lockdown in 2020. (Chandler, 2020) Cyclists make use of a broad selection of products to enhance their performance. Those products range from wireless gear shifting, advanced geometry, smart suspension. This project is aimed to indicate the importance of tire pressure and to introduce a product which will be able to adjust tire pressure while cycling. This product will give cyclist an advantage on different terrains as well as eliminate some common problems amongst cyclists. Flat tires are one of these problems. It occurs commonly amongst cyclists and can happen due to a variety of reasons. Another problem is wrongly inflated tires. This causes unnecessary loss in a cyclist’s power and speeds due to the high rolling resistance between the tires and the surface. This then results in losing time whether racing or commuting. In an article published in 2014 in Velonews.com, Lennard Zinn states: “Whether on tarmac or singletrack, a tire with lower rolling resistance reduces the power required to move forward while also providing a better quality ride. The tire absorbs small bumps by not transferring them into the bicycle and rider, resulting in a smoother ride, faster speeds, and better cornering." (Zinn, 2014) Taking this in consideration it becomes clear that it is important to develop a system which is able to control tire pressure.

斜槓元宇宙-智慧新農機:全球首創利用Arduino自動偵測「迴轉耕耘機」犁耕土壤深度的火犁仔(曳引機)、解決人類糧食危機

本研究以機電整合,發明了【曳引機迴轉犁偵測系統】,將大型農業機械智能化,並優化及整合工程技術,設計了六大系統,藉由量化評工程效益及作物的產量變化,觀察設計成效。 根據文獻,水稻管理使用「灌溉系統」+「雜草抑制蓆」+「生物肥料」的機制,可以增加產量[1,2]。因此我們優化這些機制,並設計「精準深耕」、「智慧噴桿」、「滴灌系統」形成六大系統。利用自創的【曳引機迴轉犁偵測系統】,犁耕時就可以在每一寸土地上,精確控制土壤深度在25cm的「精準深耕」。我們也發現,在這六大系統的協同效應下,不僅省下3~12倍的作業時間,同時在加乘效果的作用下,產量可以大幅提高至79%。 本實驗花二年時間,在台中清水地區1.2公頃的農地,實際建構這六大系統。並使用無人機偵測飛行高度的3D立體影像感測器、Arduino微控制器、燒入自行設計的Arduino C程式,成功發明【曳引機迴轉犁偵測系統】,並裝在大型曳引機,用來偵測迴轉耕耘機翻鬆土壤的深度,同步將該數據立即顯示在駕駛室的儀表板。 目前全球六大品牌大型曳引機,造價超過新台幣400萬元,尚無一款具有本研究自創的迴轉犁自動偵測功能。

朽木生花-初探以中藥萃取液對木材染色之防蟲抑菌效果

In our experiment, we used traditional Chinese medicine to dye on cheap wood, in addition to avoiding the impact of chemical paint on human body; After dyeing, the color and texture quality of the wood are improved, which makes cheap wood have higher price and improves the value of wood; At the same time, it can reduce the felling of slow growing precious wood, which has the functions of environmental protection, earth love and carbon saving. The test material was pretreated with hydrogen peroxide and surfactant, and the bleaching effect was obvious. After dyed with different Chinese medicinal, soak in strong acid and alkali solution for 15 minutes, which shows that strong acid and acid treatment is not allowed. On the other hand, after 15 minutes of immersion in detergent, the color difference value is less than 2, and the rubbing fastness is above grade 4. In the bacteriostasis experiment, no fungus grew in the first 3 days, and it did not grow in the 12th day. In the anti-termite experiment, the mortality rate on the fifth day was 65% for Lithospermum and 83.8% for Wolfberry, and the other groups had a good effect of total elimination. While plastic products have a great impact on the environment, wood that is dyed or modified with natural colored dye, its environmental value far exceeds the human visual perception.

鑑色~藍染動力進行式

傳統藍染,染個深藍色的布,需要反覆侵染二、三十次才行,而每一次洗滌,都是藍水會對環境污染!我們自製鑑色儀器的設計,以白光照射吸光儀,讓光敏電阻感光後,測量一般電阻電壓大小,以不同濃度製作檢量線比較染液濃度;染布鑑色儀則是以GY-33顏色感測器校正後,快速測出色布上同樣區塊面積的RGB值,再利用線上顏色代碼轉換工具,轉換成HSB 值來分析染布顏色。而染布動力的部份我們想把一直都是用塑膠積木製作的二~六槳水車更新成金屬,然後再次比較出不同水位負載物的氧化及還原轉速,希望能找出最佳水車運轉速率及水位高度比,為了因應長度較大的藍巾,水車轉動還加入程式控制順逆轉軸的動力輪替。最後,我們比較增加風速或溫度可否加速藍染氧化之定色,讓精準快速的藍染文化成為可能。

Designing a LiDAR topographic navigation system: A novel approach to aid the visually impaired

The WHO reports 2.2 billion people internationally have a form of visual impairment, with Perkins School of Blind adding that 4 to 8 percent (8.8 - 17.6 million people) solely rely on a white cane for navigation. In an interview by Stephen Yin for NPR, visually impaired interviewees claimed that a white cane was ineffective as it failed to detect moving obstacles (ex. bikes), aerial obstacles (ex. falling objects), and it became physically demanding after a prolonged period. This problem can be solved with a headset that integrates LiDAR technology and haptic feedback to provide a real-time assessment of their environment. Theoretically, the device will determine how far an object is from the user and place it into one of three conditionals based on distance (0- 290mm, 310-500mm, 510-1200mm). As the user gets closer to the object, the haptic will vibrate more frequently. The device has 11 LIDAR sensors, beetle processors, and ERM motors so that when the LiDAR detects an object, the device will send a haptic signal in that area. It not only identifies the existence of an object but it tells the user its relative position with a latency period of approximately 2 milliseconds. When testing the device, a simulated walking environment was made. Ten obstacles were included: five below the waist (72”, 28”, 35” and 8.5” tall sticks) and five above the waist (paper suspended 6”, 10”, 48” and 28” from the ceiling). The white cane detected 4.1 obstacles, whereas the device detected 7.3 on average. The LiDAR navigation system is 178% more effective at detecting objects comparatively. Visually impaired individuals no longer must rely on the white cane; rather, using this device, they can detect small, moving, and aerial objects at a much faster, and more accurate speed.

從篩選植物澱粉與顆粒製程改質到手術防沾黏之效用評估與材料檢測

近年有許多研究開發粉末顆粒的防沾黏材料,在手術中可以輕易地噴灑在傷口附近達到防沾黏的目的。本研究首先篩選天然植物澱粉,探討並比較不同澱粉作為防沾黏材料的合適性,其次,在顆粒改質的乳化法中採用不同離子來製成防沾黏澱粉,並比較材料特性,包含粉末顆粒大小形貌、吸水效率、黏度。我們比較市場上多種食用性澱粉,乙醯化磷酸二澱粉具有最高約的吸水效率598%。在此研究中我們以乳化法將界面活性劑接枝在澱粉顆粒的表面來增加材料的親水性,並在乳化法中添加不同的離子化合物,結果顯示氯化鈉(NaCl)改質的乙醯化磷酸二澱粉,其吸水效率可進一步提升到1328.3 %,使用氯化鉀(KCl)改質的澱粉為1131.6%,而使用氯化鈣(CaCl2)則是1096.9%。實驗結果與討論顯示越高的吸水率有越好的抗沾黏效果。

PBC~ A home-use detection device for brain tumors that compress the brain stem and optic nerve

腦部腫瘤是沉默殺手, 藏匿在腦中數十年。 一旦發作,通常都會造成巨大的影響。雖有數種高階儀器,可以檢測。但檢測過程繁複、 等待時間以及價格, 對於民眾都是不小的負擔。 腦部腫瘤的診斷方式為: 神經內、 外醫生會用筆燈對患者做初步的瞳孔光反應檢查。 藉由患者瞳孔縮小的速率,判斷是否要安排進階的檢查。但此行為仰賴醫生的經驗,沒有統一的方法及數據可供判斷。 本研究設計一款成本約$1,300 元, 重量僅 159 g,圓柱直徑與柱高皆約為 7cm 的隨身裝置。 藉由 MCU 控制攝影機, 頂部 1.44 吋 TFT 螢幕可即時顯示患者眼部狀態,檢查結果計算後, 也會立即顯示在螢幕上。除提供醫護人員即時數據化的解讀患者狀態。更協助醫護人員在做瞳孔光刺激檢查時,有科學化的標準。

DEVELOPMENT AND USE OF LASER 3D SCANNER OF PREMISES

This research work is devoted to the stages of development and creation of a prototype of a laser 3D scanner model, programming of a controlling microcontroller, construction of 3D models of a scanned object. In the course of the work, the market of 3D scanners, which are used to build three-dimensional models of premises, was analyzed, the equipment necessary for the development and creation of the prototype was analyzed, as well as the software necessary for the operation of the prototype. The result of the work was the creation of a laser 3D scanner based on an Arduino microcontroller using a Lidar type sensor that scans and builds 3D models of objects. This working model of the 3D scanner demonstrates good capabilities and turned out to be easy to use.