全國中小學科展

工程學

風場下圓柱氣孔導管抽吸對風阻係數影響

本研究藉由孔洞抽氣控制氣流邊界層,影響尾部渦流以達到減阻效果。研究主要探討的變因有:孔洞大小、抽氣速率,進而發想抽吸設計是否可運用在旋轉圓柱上。實驗與之前不同的是為抽氣孔洞加裝導管,以及創新的實驗旋轉裝置。實驗結果顯示,透過延緩邊界層分離可以有效控制阻力,在雷諾數15000時,可減阻。抽氣速率達22m/s,減阻最大值達23%。此實驗想法可有效達到減阻效果,並且可以使旋轉葉片減少旋轉阻力,在電壓6V時,轉速提升11%。未來期望能應用在風力發電機葉片上,減少旋轉風阻,提升發電效率。

竹片熱電流增益放大及熱電流充電器

本實驗利用竹片導熱性差的天然特性,將奈米金屬顆粒以高壓蒸氣及低壓吸入法嵌入竹片的維管束中,並將NaCl蒸煮滲入竹片組織,形成導電通道,以提升修飾後竹片的電導率。量測實驗發現以氯化鈉及銀奈米顆粒修飾後的竹片,電導率提升達11880倍,而熱導率僅提升10%,可成為常溫範圍熱電材料。NaCl在解離成Na+與Cl-導電率可提升103倍。我們將修飾後的竹片,密封在含水蒸氣的電絕緣小盒中,製作成竹片熱電裝置。LED燈泡發光度實驗,當竹片兩端溫差為45度時,燈泡發光度提升40%,為一熱電流增益放大器。串聯竹片熱電裝置在普魯士藍二次電池充電線路中,以0.015 mA電流充電,發現當竹片兩端溫差為45度時,充電電流提升到0.025 mA,飽和充電時間從原本的12小時,縮短到7小時。

Automated Inflation and Pressure Regulation for Recreational and Professional Cyclists

Cycling is a very popular mode of transport as well as a famous sport around the world. Many people enjoy this sport either professionally or recreationally. Cycling in the UK alone has grown up to 200% since lockdown in 2020. (Chandler, 2020) Cyclists make use of a broad selection of products to enhance their performance. Those products range from wireless gear shifting, advanced geometry, smart suspension. This project is aimed to indicate the importance of tire pressure and to introduce a product which will be able to adjust tire pressure while cycling. This product will give cyclist an advantage on different terrains as well as eliminate some common problems amongst cyclists. Flat tires are one of these problems. It occurs commonly amongst cyclists and can happen due to a variety of reasons. Another problem is wrongly inflated tires. This causes unnecessary loss in a cyclist’s power and speeds due to the high rolling resistance between the tires and the surface. This then results in losing time whether racing or commuting. In an article published in 2014 in Velonews.com, Lennard Zinn states: “Whether on tarmac or singletrack, a tire with lower rolling resistance reduces the power required to move forward while also providing a better quality ride. The tire absorbs small bumps by not transferring them into the bicycle and rider, resulting in a smoother ride, faster speeds, and better cornering." (Zinn, 2014) Taking this in consideration it becomes clear that it is important to develop a system which is able to control tire pressure.

斜槓元宇宙-智慧新農機:全球首創利用Arduino自動偵測「迴轉耕耘機」犁耕土壤深度的火犁仔(曳引機)、解決人類糧食危機

本研究以機電整合,發明了【曳引機迴轉犁偵測系統】,將大型農業機械智能化,並優化及整合工程技術,設計了六大系統,藉由量化評工程效益及作物的產量變化,觀察設計成效。 根據文獻,水稻管理使用「灌溉系統」+「雜草抑制蓆」+「生物肥料」的機制,可以增加產量[1,2]。因此我們優化這些機制,並設計「精準深耕」、「智慧噴桿」、「滴灌系統」形成六大系統。利用自創的【曳引機迴轉犁偵測系統】,犁耕時就可以在每一寸土地上,精確控制土壤深度在25cm的「精準深耕」。我們也發現,在這六大系統的協同效應下,不僅省下3~12倍的作業時間,同時在加乘效果的作用下,產量可以大幅提高至79%。 本實驗花二年時間,在台中清水地區1.2公頃的農地,實際建構這六大系統。並使用無人機偵測飛行高度的3D立體影像感測器、Arduino微控制器、燒入自行設計的Arduino C程式,成功發明【曳引機迴轉犁偵測系統】,並裝在大型曳引機,用來偵測迴轉耕耘機翻鬆土壤的深度,同步將該數據立即顯示在駕駛室的儀表板。 目前全球六大品牌大型曳引機,造價超過新台幣400萬元,尚無一款具有本研究自創的迴轉犁自動偵測功能。

Designing a LiDAR topographic navigation system: A novel approach to aid the visually impaired

The WHO reports 2.2 billion people internationally have a form of visual impairment, with Perkins School of Blind adding that 4 to 8 percent (8.8 - 17.6 million people) solely rely on a white cane for navigation. In an interview by Stephen Yin for NPR, visually impaired interviewees claimed that a white cane was ineffective as it failed to detect moving obstacles (ex. bikes), aerial obstacles (ex. falling objects), and it became physically demanding after a prolonged period. This problem can be solved with a headset that integrates LiDAR technology and haptic feedback to provide a real-time assessment of their environment. Theoretically, the device will determine how far an object is from the user and place it into one of three conditionals based on distance (0- 290mm, 310-500mm, 510-1200mm). As the user gets closer to the object, the haptic will vibrate more frequently. The device has 11 LIDAR sensors, beetle processors, and ERM motors so that when the LiDAR detects an object, the device will send a haptic signal in that area. It not only identifies the existence of an object but it tells the user its relative position with a latency period of approximately 2 milliseconds. When testing the device, a simulated walking environment was made. Ten obstacles were included: five below the waist (72”, 28”, 35” and 8.5” tall sticks) and five above the waist (paper suspended 6”, 10”, 48” and 28” from the ceiling). The white cane detected 4.1 obstacles, whereas the device detected 7.3 on average. The LiDAR navigation system is 178% more effective at detecting objects comparatively. Visually impaired individuals no longer must rely on the white cane; rather, using this device, they can detect small, moving, and aerial objects at a much faster, and more accurate speed.

朽木生花-初探以中藥萃取液對木材染色之防蟲抑菌效果

In our experiment, we used traditional Chinese medicine to dye on cheap wood, in addition to avoiding the impact of chemical paint on human body; After dyeing, the color and texture quality of the wood are improved, which makes cheap wood have higher price and improves the value of wood; At the same time, it can reduce the felling of slow growing precious wood, which has the functions of environmental protection, earth love and carbon saving. The test material was pretreated with hydrogen peroxide and surfactant, and the bleaching effect was obvious. After dyed with different Chinese medicinal, soak in strong acid and alkali solution for 15 minutes, which shows that strong acid and acid treatment is not allowed. On the other hand, after 15 minutes of immersion in detergent, the color difference value is less than 2, and the rubbing fastness is above grade 4. In the bacteriostasis experiment, no fungus grew in the first 3 days, and it did not grow in the 12th day. In the anti-termite experiment, the mortality rate on the fifth day was 65% for Lithospermum and 83.8% for Wolfberry, and the other groups had a good effect of total elimination. While plastic products have a great impact on the environment, wood that is dyed or modified with natural colored dye, its environmental value far exceeds the human visual perception.

DEVELOPMENT AND USE OF LASER 3D SCANNER OF PREMISES

This research work is devoted to the stages of development and creation of a prototype of a laser 3D scanner model, programming of a controlling microcontroller, construction of 3D models of a scanned object. In the course of the work, the market of 3D scanners, which are used to build three-dimensional models of premises, was analyzed, the equipment necessary for the development and creation of the prototype was analyzed, as well as the software necessary for the operation of the prototype. The result of the work was the creation of a laser 3D scanner based on an Arduino microcontroller using a Lidar type sensor that scans and builds 3D models of objects. This working model of the 3D scanner demonstrates good capabilities and turned out to be easy to use.

以仿生袋鼠進行跳躍研究並應用於外骨骼

此研究選擇以袋鼠為仿生對象,希望應用袋鼠高速移動的特點,製作仿生動物,並觀測其跳耀動作,提升動作的流暢度。 首先對澳洲袋鼠在跳躍時的動作,進行動態分析,取得跳躍時其最佳腿部彎曲動作。經歷二次的外觀與整體結構更改,以及數十次的細微尺寸與外觀修飾的調整,完成了此次使用的仿生袋鼠。 此仿生袋鼠使用18公分長的小腿為基準,設計跳躍動作影響便因。首先更改個部位的馬達扭力進行跳躍距離和高度的紀錄,測驗出距離最遠,高度最高的數據,並依同樣的變因條件,進行腿部長度的變更,同樣求得最佳數據再進行下一實驗,以此求得在各變因下最佳的條件。 本研究包含生物觀察、機械繪圖、動作分析,而希望此實驗數據在未來能應用於跳躍型的外骨骼。

An Efficient and Accurate Super-Resolution Approach to Low-Field MRI via U-Net Architecture With Logarithmic Loss and L2 Regularization

Low-field (LF) MRI scanners have the power to revolutionize medical imaging by provid- 27 ing a portable and cheaper alternative to high-field MRI scanners. However, such scanners are usu- 28 ally significantly noisier and lower quality than their high-field counterparts. This prevents them 29 from appealing to global markets. The aim of this paper is to improve the SNR and overall image quality of low-field MRI scans (called super-resolution) to improve diagnostic capability and, as a result, make it more accessible. To address this issue, we propose a Nested U-Net neural network architecture super-resolution algorithm that outperforms previously suggested super-resolution deep learning methods with an average PSNR of 78.83 ± 0.01 and SSIM of 0.9551 ± 0.01. Our ANOVA paired t-test and Post-Hoc Tukey test demonstrate significance with a p-value < 0.0001 and no other network demonstrating significance higher than 0.1. We tested our network on artificial noisy downsampled synthetic data from 1500 T1 weighted MRI images through the dataset called the T1- mix. Four board-certified radiologists scored 25 images (100 image ratings total) on the Likert scale (1-5) assessing overall image quality, anatomical structure, and diagnostic confidence across our architecture and other published works (SR DenseNet, Generator Block, SRCNN, etc.). Our algo- rithm outperformed all other works with the highest MOS, 4.4 ± 0.3. We also introduce a new type of loss function called natural log mean squared error (NLMSE), outperforming MSE, MAE, and MSLE on this specific SR task. Additionally, we ran inference on actual Hyperfine scan images with successful qualitative results using a Generator RRDB block. In conclusion, we present a more ac- curate deep learning method for single image super-resolution applied to low-field MRI via a 45 Nested U-Net architecture.

提升纜車遭遇陣風之安全性-利用自製調諧質量阻尼器與可調式吊臂

遭遇強風是纜車停駛的條件之一,然而我們認為當低於停駛標準的陣風與纜車產生共振時,更會使纜車產生擺動造成危險。因此我們參考真實纜車的比例,製作出模型探討不同頻率及速度陣風對纜車造成的影響。我們發現即使風速未達停駛標準,但當其頻率與纜車接近時,即會發生共振並產生將近 30度的擺角、強度相較持續風吹拂增加 60分貝。 為了減低振動,我們首先製作可調式吊臂。但因為其在實際製作上具有困難,且可能造成乘客的不適。為此我們製作了調諧質量阻尼器,當共振發生時,將砝碼透過伺服馬達放下,使纜車的振動傳導至垂下的擺減緩振動。結果顯示阻尼器能將振動減低 10分貝,最佳的組別甚至有 16分貝的減振效果,能將擺角減低至小於 2度。期望將來能將系統自動化,在纜車遭遇陣風時自動調變阻尼器,抑制振動。