全國中小學科展

工程學

圖形化物聯網小型折線機之研究

生活中網路商店或夜市常看到業者手工用鋁線在折造型,這些造型必須應用手工方式生產,所以生產效率及重現性低,且這類型的塑性加工在課堂上我們只能觀看一些影片來教學,無法實際進行操作。本研究用單折彎頭來進行金屬線之折線加工,以課堂所學知識及加工技術背景進行開發,主要以3D列印機的Arduino+RAMPS1.4控制器為基礎,自行設計及加工折線機構、進線機構、轉軸機構與螺桿機構開發出小型折線機。利用Python程式語言開發出將圖型座標轉換為NC碼,透過ESP-01S物聯網方式,直接控制所需的機械動作,做出所需的作品,讓使用者只需畫圖即可做出成品,不需學習機器控制語法。本研究可自動化加工生產、具有3D折線功能、折不同軟硬度的材料、操作介面簡便、體積小、成本低。

鐵道守護者–高準確率AI鐵道辨識異物入侵系統設計之研究

在2021年4月2日台鐵太魯閣號在清水隧道行駛到轉彎口與滑落邊坡的工程車碰撞,造成火車出軌,衝入隧道中擦撞到隧道壁,造成49人死亡和247人輕重傷!當我們看到這則新聞時,心裡充滿驚訝與心疼!為了改善這問題,我們開始討論和查資料,發現台鐵在107年12月有一個「邊坡全生命監測系統」計畫,運用AI影像辨識技術,台鐵的規格是95%以上準確率,但因為辨識準確度不夠高,所以延宕到現在仍未完成。 我們設計AI鐵道辨識異物入侵系統,藉由攝影機將鐵道周遭影像傳至台鐵行控中心,運用AI深度學習技術辨識入侵鐵道的異物,從而準確判斷,讓火車駕駛員能提前預警,達到保障人車安全的目的。本研究並建立一套科學系統的方法來訓練視覺辨識模型,從而提高準確率,目前最高的準確率是97%!

朽木生花-初探以中藥萃取液對木材染色之防蟲抑菌效果

In our experiment, we used traditional Chinese medicine to dye on cheap wood, in addition to avoiding the impact of chemical paint on human body; After dyeing, the color and texture quality of the wood are improved, which makes cheap wood have higher price and improves the value of wood; At the same time, it can reduce the felling of slow growing precious wood, which has the functions of environmental protection, earth love and carbon saving. The test material was pretreated with hydrogen peroxide and surfactant, and the bleaching effect was obvious. After dyed with different Chinese medicinal, soak in strong acid and alkali solution for 15 minutes, which shows that strong acid and acid treatment is not allowed. On the other hand, after 15 minutes of immersion in detergent, the color difference value is less than 2, and the rubbing fastness is above grade 4. In the bacteriostasis experiment, no fungus grew in the first 3 days, and it did not grow in the 12th day. In the anti-termite experiment, the mortality rate on the fifth day was 65% for Lithospermum and 83.8% for Wolfberry, and the other groups had a good effect of total elimination. While plastic products have a great impact on the environment, wood that is dyed or modified with natural colored dye, its environmental value far exceeds the human visual perception.

壓電-摩擦感測器配合CNN進行步態分析及身分識別

我們設計了一款透過壓電片與摩擦片收集資料的智慧鞋,壓電片嵌入在鞋底,摩擦片安裝在前腳掌,兩者並聯。當人行走時,感測器會被擠壓變形,藉由DAQ(數據採集)收集感測器的電壓輸出,可顯示出正常步行、快走、慢跑和漫步等活動的訊息,利用時變電壓形式的輸出數據,與能夠識別時域信號的CNN深度學習(卷積神經網絡)進行不同類型步態辨識。 實驗結果顯示此方法可以辨檢測這四種步態,其辨識率高達95%。訓練好的CNN可同時辨識個人身份與步態。結果顯示,識別快走時辨識率極高,識別正常步行和漫步時辨識率為90%,識別慢跑時辨識率僅達49%。因此,我們未來預計將提高同時辨識不同受試者與不同步態之辨識率,並透過壓電能量擷取器為藍牙模組供電。

風場下圓柱氣孔導管抽吸對風阻係數影響

本研究藉由孔洞抽氣控制氣流邊界層,影響尾部渦流以達到減阻效果。研究主要探討的變因有:孔洞大小、抽氣速率,進而發想抽吸設計是否可運用在旋轉圓柱上。實驗與之前不同的是為抽氣孔洞加裝導管,以及創新的實驗旋轉裝置。實驗結果顯示,透過延緩邊界層分離可以有效控制阻力,在雷諾數15000時,可減阻。抽氣速率達22m/s,減阻最大值達23%。此實驗想法可有效達到減阻效果,並且可以使旋轉葉片減少旋轉阻力,在電壓6V時,轉速提升11%。未來期望能應用在風力發電機葉片上,減少旋轉風阻,提升發電效率。

Dear NEMO~How are you?-動態位置捕捉海水魚及監控環境條件

網路上已經有很多人在做遠端的魚缸環境監控,但監控好環境條件,魚也不一定過得好,本實驗則是導入魚活動的參數,直接分析魚的活動力,以最直接的方式去觀測小丑魚的舒適程度。 本實驗研究目的為利用Arduino監測系統,監測裝置,並應用Blynk程式繪製環境數值趨勢變化圖。 本實驗的監控變因分為四個:水溫、pH值、水濁度,利用Blynk程式建立起一個能長時間即時監控及紀錄的系統,並建立起警示系統作為提醒裝置。 本實驗更進一步的結合Pixy Cam的監控系統,改變溫度及光照週期,並結合Raspberry pi的數據處理功能,自動處理龐大的數據,探討此兩變因對小丑魚活動力的影響。 此實驗是個發想,自動追蹤紀錄並處理大數據,此方法在未來可用來延伸研究養殖小丑魚的各種行為模式。

以仿生袋鼠進行跳躍研究並應用於外骨骼

此研究選擇以袋鼠為仿生對象,希望應用袋鼠高速移動的特點,製作仿生動物,並觀測其跳耀動作,提升動作的流暢度。 首先對澳洲袋鼠在跳躍時的動作,進行動態分析,取得跳躍時其最佳腿部彎曲動作。經歷二次的外觀與整體結構更改,以及數十次的細微尺寸與外觀修飾的調整,完成了此次使用的仿生袋鼠。 此仿生袋鼠使用18公分長的小腿為基準,設計跳躍動作影響便因。首先更改個部位的馬達扭力進行跳躍距離和高度的紀錄,測驗出距離最遠,高度最高的數據,並依同樣的變因條件,進行腿部長度的變更,同樣求得最佳數據再進行下一實驗,以此求得在各變因下最佳的條件。 本研究包含生物觀察、機械繪圖、動作分析,而希望此實驗數據在未來能應用於跳躍型的外骨骼。

Conscious Brain Mind-Controlled Cybonthitic Cyborg Bionic-Leg - V2

Lower limb amputations affect about 28.9 million people worldwide, influencing normal human functions, we are developing a conscious brain mind-controlled Cybonthitic cyborg bionic-leg to provide a professional solution for this problem, which is classified as restricted knee movement, short-term solution, limited pressure bearing, unspecific analog reading of EMG; Because the output voltage measured in nano-volts, resulting in unspecific knee movement. The functionality of these modern gadgets is still limited due to a lack of neuromuscular control (i.e. For movement creation, control relies on human efferent neural signals to peripheral muscles). Electromyographic (EMG) or myoelectric signals are neuromuscular control signals that can be recorded from muscles for our engineering goals. We worked on a sophisticated prosthetic knee design with a 100-degree angle of motion. We also used a specific type of coiled spring to absorb abrupt or unexpected motion force. In addition, we amplified the EMG output from (Nano-Voltage) to (Milli-Voltage) using customized instrumentation amplifiers (operational amplifiers). We used a full-wave rectifier to convert AC to DC, as a consequence of these procedures, sine-wave output voltage measures in millivolts, and the spring constant indicates the most force for every 1cm. Von mises Stress analysis shows bearing as 3000N is the maximum load for the design. Detecting the edge of a stairwell using the first derivative. The benefit of a system that controls the prosthetic limb is activated by the patient’s own EMG impulses, rather than sensors linked to the body.

An Efficient and Accurate Super-Resolution Approach to Low-Field MRI via U-Net Architecture With Logarithmic Loss and L2 Regularization

Low-field (LF) MRI scanners have the power to revolutionize medical imaging by provid- 27 ing a portable and cheaper alternative to high-field MRI scanners. However, such scanners are usu- 28 ally significantly noisier and lower quality than their high-field counterparts. This prevents them 29 from appealing to global markets. The aim of this paper is to improve the SNR and overall image quality of low-field MRI scans (called super-resolution) to improve diagnostic capability and, as a result, make it more accessible. To address this issue, we propose a Nested U-Net neural network architecture super-resolution algorithm that outperforms previously suggested super-resolution deep learning methods with an average PSNR of 78.83 ± 0.01 and SSIM of 0.9551 ± 0.01. Our ANOVA paired t-test and Post-Hoc Tukey test demonstrate significance with a p-value < 0.0001 and no other network demonstrating significance higher than 0.1. We tested our network on artificial noisy downsampled synthetic data from 1500 T1 weighted MRI images through the dataset called the T1- mix. Four board-certified radiologists scored 25 images (100 image ratings total) on the Likert scale (1-5) assessing overall image quality, anatomical structure, and diagnostic confidence across our architecture and other published works (SR DenseNet, Generator Block, SRCNN, etc.). Our algo- rithm outperformed all other works with the highest MOS, 4.4 ± 0.3. We also introduce a new type of loss function called natural log mean squared error (NLMSE), outperforming MSE, MAE, and MSLE on this specific SR task. Additionally, we ran inference on actual Hyperfine scan images with successful qualitative results using a Generator RRDB block. In conclusion, we present a more ac- curate deep learning method for single image super-resolution applied to low-field MRI via a 45 Nested U-Net architecture.

提升纜車遭遇陣風之安全性-利用自製調諧質量阻尼器與可調式吊臂

遭遇強風是纜車停駛的條件之一,然而我們認為當低於停駛標準的陣風與纜車產生共振時,更會使纜車產生擺動造成危險。因此我們參考真實纜車的比例,製作出模型探討不同頻率及速度陣風對纜車造成的影響。我們發現即使風速未達停駛標準,但當其頻率與纜車接近時,即會發生共振並產生將近 30度的擺角、強度相較持續風吹拂增加 60分貝。 為了減低振動,我們首先製作可調式吊臂。但因為其在實際製作上具有困難,且可能造成乘客的不適。為此我們製作了調諧質量阻尼器,當共振發生時,將砝碼透過伺服馬達放下,使纜車的振動傳導至垂下的擺減緩振動。結果顯示阻尼器能將振動減低 10分貝,最佳的組別甚至有 16分貝的減振效果,能將擺角減低至小於 2度。期望將來能將系統自動化,在纜車遭遇陣風時自動調變阻尼器,抑制振動。