全國中小學科展

出國代表作品

雨水衝擊和土壤滲透速率關係之探討

This research is devoted to researching the influence of rain-drop impact on the rate of infiltration. Rain-drop simulators 160cm tall drip water into a transparent container (14 x 10 x 4) of three kinds of soil (quartz sandstone, loess, sand soil) Through the manipulation of factors such as rain impact (raindrop diameter, raindrop descendent height, frequency of impact) and soil property, we experiment the different possibilities of infiltration and its rate under various conditions. Through this comparison we aim to discover the relation between rain impact and infiltration rate. This research concludes the following: 1. The larger the diameter of the raindrop, the quicker the infiltration rate. 2. The greater the descendent height, the greater the speed of infiltration due to collected descending speed. 3. In the early stage of rain, the greater the frequency of rain impact, the faster the rate of infiltration. 4. Under controlled raining conditions, the larger blank sand soil allows greater infiltration speed. 5. In the later stage of rain impact, a blanket of water accumulates on the surface of the soil, reducing the impact force and thus affecting the rate of infiltration. 本研究試探究雨滴撞擊對土壤入滲速度所造成的影響,針對此問題設計下列方法,以進行探討。我們採用高160cm 的自製雨滴模擬器來滴濺長14cm,寬10cm、高4cm 的透明實驗盒裝入三種土樣(石英砂、黃土與黑砂壤),接著改變各種雨水衝擊因子(不同直徑的水滴、不同的落下高度、不同的撞擊頻率)和土壤條件(土壤性質…)等變因,讓滴濺過程產生不同的情形,滴濺過後再行滲透作用,比較各情況所造成的滲透速率快慢的差異,尋找出雨滴衝擊和土壤滲透速率的關係。本研究有以下幾點結論:1. 雨滴粒徑愈大,對於土壤的入滲速率愈快。2. 雨水落下高度愈大時,因水滴動能的增加,土壤的入滲速率也愈快。3. 在水滴撞擊的初期,當水滴滴落頻率愈大時,土壤的入滲速率也會愈快。4. 當雨滴條件相同時,平均粒度較大的黑砂壤其入滲速率較快。5. 在雨滴撞擊後期,因表層土壤產生的水膜造成雨滴撞擊能量的變化。當水膜厚度愈大時,撞擊產生的能量有減少的趨勢而影響了土壤的入滲速率。

界面活性劑對硫奈米微粒形成機制的影響

硫代硫酸鈉在鹽酸中會產生自身氧化還原反應。溶液維持一段時間的澄清透明,突然快速析出硫微粒而顯得白色混濁,同時顯現廷得耳效應。溶液維持勻相的時間稱為延遲時間,其長短隨起始物濃度與溫度而異。在反應溶液中添加界面活性劑可有效增長延遲時間。以UV-Vis光譜儀分析反應溶液的吸收度變化,界面活性劑的濃度夠高時,延遲時間的倒數與添加界面活性劑濃度的倒數成簡單正比關係。此速率定律式符合界面活性劑與硫核微粒結合形成保護核的機制。陽離子性的界面活性劑如CTAB,明顯地較陰離子或中性界面活性劑有較佳的保護效果。IR及X光繞射光譜分析顯示CTAB與硫微粒有共沉澱的現象。The thiosulfate ions undergo disproportionation in hydrochloric acid to form sulfur. The reaction solutions remain clear first, followed with sudden formation of discrete particles that are observed by the appearance of Tyndall beam. The induction periods vary upon the initial concentration of the reactants and temperature. Addition of surfactant to the reaction solutions significantly prolongs the induction period, indicating the association of surfactant molecules with the nuclei of sulfur particles can hinder the aggregation of sulfur particle-nuclei. The UV-visible spectrophotometric measurements for the formation of sulfur particles in the presence of various surfactants show that the reciprocal values of induction period are proportional to the reciprocal of surfactant concentrations. Such a rate law is elucidated by an associative pre-equilibrium mechanism. The surfactant molecules appear to effectively protect the nuclei of sulfur particles from aggregation. The cationic surfactant such as CTAB demonstrates better "protection" ability than do the anionic or neutral surfactants. The IR and X-ray diffraction analysis indicate that CTAB can result in co-precipitation with sulfur, also supporting the suggested mechanism.

從導電度看乳化

界面活性劑因分子一端具極性基(polar group)而有導電性,本研究以市售之界面活性劑(PAOS洗碗精)從事其水溶液導電度探討,實驗顯示,PAOS水溶液之導電度隨溫度升高而增加,90°C之導電度約為常溫之三倍,純水之變化則極微。除溫度外,界面活性劑濃度亦影響導電度,濃度越高導電度越大,定溫(23°C)之導電度隨PAOS含量增加呈直線上升關係,PAOS含量每增2%導電度約增加1000μS,當含10%PAOS之水溶液中期導電度約增為4700μS。乳化效果對導電度亦有明顯之影響。在含PAOS 0.5~3%之水溶液中加入沙拉油,隨沙拉油加入量之增加其導電度均呈現下降現象。例如,在含有PAOS 3%之200克水溶液當中加入10克沙拉油時,其導電度約下降了15%。如果加入更多沙拉油,或者乳化攪拌過後之停滯時間過久,造成乳化平衡破壞,其導電度數據則較不規則。因此,我們可由溶液導電度之量測結果判定乳化效果,並可測定乳化攪拌之最佳條件。實驗除了以導電度探討其乳化效果外,並用顯微鏡同步觀測,以對結果做出更具說服力的解釋。將實驗數據以3D圖(立體圖)呈現以描述系統的連續變化狀態。再利用簡易的曲線回歸、斜率比較等,判定在定溫、一定攪拌條件下,清潔劑的較佳使用濃度。Surfactants have polar end groups at its molecular structure lead it with electrical conductivity in properties. This report discuss conductivity of a market purchasable surfactant named PAOS. Experiment results indicate conductivity of PAOS water solution increases with rising temperature. Triple in conductivity of this solution was found at 90°C than that of at room temperature. While the changes for pure water is very small. Except temperature influence, surfactant concentration also influence its conductivity. Generally, higher concentration gives higher electrical conductivity. At room temperature(23°C) a straight line relationship was observed between the solution concentration and the conductivity. For every increase 2% will led to increasing in conductivity for 1000 μS. When 10% PAOS in water solution is reached 4700 μS in conductivity was observed. Emulsification give obvious inference in conductivity. If cooking oil is added in 0.5~3% PAOS solution, conductivity will decrease with increasing oil added. For instance, when 10 grams of oil was added in 200 grams water solution that contain 3% PAOS, conductivity of this solution decreased for 15%. If more oil is added or setting time is too long after the solution is emulsified that destroy the emulsify balance. The conductivity of the system become irregular. In this way, it is possible to detect effect of emulsify through the measurement in its conductivity. Therefore most favorable condition in emulsification can be determined. In addition to using conductive measurement to determine effect of emulsification, microscopic technique also used trying to find even more convincible explanations. The data of different concentration experimented above can be presented on a 3D chart, we obtain several curves that can be differentially analyzed and estimated for a relatively ideal concentration, which will work more efficiently than others in the condition of the experiment.

耐熱藍綠菌光反應的特殊保護機制─狀態變遷

"隨著全球溫度逐年升高,生物如何在高溫下生存成了一個急需解決的問題,本研究探討耐熱藍綠菌(Thermosynechoccus sp.CL1)與常溫藍綠菌(Synechocystis sp. PCC6803)在不同溫度下光合作用光反應的異同,並了解耐熱藍綠菌光反應耐熱的原因。\r 本研究中發現在高溫下耐熱藍綠菌存在有顯著的狀態變遷(state transition)機制,其藻藍素(phycobilisome)在暗處理的狀況下不會與光系統二結合,而這個機制可以減少光系統二在高溫下高電子傳遞速率對光系統二本身造成的破壞,支持了狀態變遷現象是耐熱藍綠菌在高溫下進行光合作用光反應的一種重要保護機制。"

終結保麗龍污染!---利用保麗龍廢棄物處理重金屬廢水之研究

保麗龍(EPS)由於無法分解一直是環境保護的嚴重困擾。本研究是將保麗龍改質為陽離 子交換樹脂(我們稱為”保麗龍膠(EPSR)”),藉以吸附重金屬廢水中的銅離子。研究內容包括: 保麗龍膠之特性、吸附銅離子之最佳條件、保麗龍膠之再利用及最終產物之固化,企圖提供 一個解決保麗龍汙染之整套方案。 我們採用五種日常生活中常見的保麗龍廢棄物進行測試。首先將它們依下列程序處理: 丙酮溶解→硬化→打碎→與濃硫酸共煮三小時→浸於50%硫酸溶液中→沖洗→以水浸泡,將 廢棄保麗龍磺酸化為保麗龍膠。在這五種保麗龍膠之中,5 號膠(由一般家電之保麗龍襯墊所 製成)具有最佳之磺酸化比例(莫耳分率)、吸附量及吸附速率。經檢測保麗龍膠的特性之後, 發現保麗龍膠為多孔物質,具有-SO3H 的官能基,吸附的模式是先進行化學吸附,高濃度 時兼具物理吸附。 保麗龍膠對銅離子的吸附研究是以一個自動化之差動電壓檢測器進行監測,同時用電腦 精確的擷取數據。保麗龍膠達到吸附銅離子的最佳條件依次為:使用細粒的5 號保麗龍膠、 銅離子溶液的濃度為50 ppm、操作溫度為10 ℃、廢水的流速為每分鐘為 5 c.c.、以及pH 值約為4.30。多次吸附確可將金屬離子幾乎完全去除。在一次初步測試中,我們成功地將三 個自製的微型保麗龍膠儲存槽串聯,進行管柱式的多次吸附,使得高吸附率時間可以維持3.5 小時以上。 保麗龍膠達到飽和吸收後,我們再將保麗龍廢膠與由硫酸廢液和碳酸鈣製得的硫酸鈣混 合,製成黏土,可以製作造型磁鐵、分子模型等物品,達成最終產物之廢物利用,完成廢棄 保麗龍再利用之完整方案。EPS waste is a severe problem for environment due to its non-dissolvability. This research proposed a method to transfer the EPS waste to cation exchange resin, designate as EPS rubber (EPSR), which could absorb Cu-ion in wastewater. The study included the character of the EPSR, the optimal conditions for Cu-ion absorption, the reusability of the EPSR and the solidification of the final production, trying to terminate the pollution of EPS waste. Five different EPS wastes were tested. They were processed as following: solved with acetone => hardening => smashing => boiling with sulfuric acid for three hours => soaking in 50% sulfuric acid solution => rinsing => soaking with water. Then the EPS were sulfonic acidified as EPSR. Among these five EPSR, EPSR-e, which was obtained from the EPS usually used for the pad of electric appliances, exhibited the best sulfonated ratio (in mole), adsorption quantity and adsorption rate. EPSR has a porous structure with a -SO3H functional group. The mechanism of adsorption is the chemical adsorption with a physical adsorption at high concentration. The Cu-ion saturating adsorption was investigated with a automatical differential-voltage detector, enabling the data to be precisely acquired by a computer. The optimal conditions for Cu-ion adsorption were employing fine EPSR-e particles, a Cu-ionic solution of 50 ppm in concentration, a flow rate of 5 c.c. per minute and a pH of about 4.30 at 10 ℃. Multiple adsorptions could remove Cu-ions almost completely. In a preliminary test, three EPSR-e absorption cells were seriated as a column, achieving a high-absorption condition to be maintained for more than three and a half hours. After the adsorption was saturated, the final production were mixed with calcium sulfate obtained form the earlier sulfuric acid waste solution to become the clay, acomplishing a total solution for EPS waste reuse.

單淘汰制賽程分析

本研究報告針對單淘汰制賽程中存在的迷思,提出方法並加以討論。單淘汰制賽程規則為每場比賽皆有勝負(即沒有和局),負方即失去奪得冠軍的機會,且不得出現於另一場賽程。全文分別對影響選手勝率的因素──選手實力與賽程安排,提出方法與概念討論。\r 第一部分討論選手實力變化對勝率的影響。利用「假想選手」的概念,討論選手於各場賽程中,所有可能遇上的對手所造成的威脅。並透過「威脅門檻」判斷對手實力的變化對自己勝率的利弊。藉由「勝率一般式」計算選手於賽程中奪冠的機率,並以各種角度觀看賽程,判斷個體與群體的實力。\r 第二部分討論位置安排對勝率造成的影響。由「勝率實力比」討論賽程安排對選手的公平性,並定義「賽程表現率」討論選手因賽程安排對勝率所造成的影響。\r 文中並以實際數據範例,希望閱讀以後的你(妳),能認識並喜歡上淘汰賽的世界。

表面張力測量新方法-連通管原理的再應用

傳統表面張力的測量儀器多屬較為貴重、攜帶不便的精密儀器,不利於一般生活或教學上使用。我們發現開口不等高的連通管水面溢出低管口端時,高管口端水位比較高,於是試圖利用此液面高度差來測量表面張力。我們探討了連通管的高度、內徑大小及材質對於液面高度差的影響,並利用此原理測量已知表面張力的液體,將液面高度差所造成的壓力與標準值做比較。結果發現液面高度差確實可以用來測量表面張力,但是低管口端要用疏水性材質的細管,測量會較準確。如果使用內徑0.5mm 的鐵氟龍管,測量出來的液面高度差(h)×液體比重(ρ)的值,與標準表面張力(T)之間呈線性關係【T(dyne/cm)=10.6(h×ρ)+6.51】,相關係數高達0.9996 (p

以熱聲效應改善微電子裝置散熱的研究

近年來在熱聲效應方面的研究產生了許多新發明,如冰淇淋冰箱與太空梭溫控系統等。然而,將熱能轉換成聲能的熱聲引擎,在散熱方面的效用只有被提起而從未被實際應用。本研究參考美國賓州大學「聲學雷射」裝置來研究熱聲引擎的特性,並提出一個以熱聲效應改善微電子器材散熱的裝置。它的優點是由電子裝置產生的熱即可啟動熱聲效應,而熱聲效應所加強的熱對流可降低該電子零件的溫度。實驗中發現透過熱聲效應的強烈散熱,可以大為降溫,由200℃降為50℃左右,這正是當代電腦內中央處理器(CPU)的工作溫度範圍。未來的研究可以針對陣列式的熱聲散熱裝置進行測試。In this project, the characteristics of the thermoacoustic engine were first studied using the “Acoustic Laser” concept. A passive thermoacoustically enhanced convection engine capable of improving the cooling effect of microelectronic devices was then proposed. This design has the advantage that no additional energy input is required, a contrast to the usage of mini-fans in today’s computers. A testbed combining a heated NiCr wire with a glass tube was used to examine the overall cooling effect. In order to evaluate its performance, we measured the following parameters: radiation, convection, conduction, and acoustic radiation. We found that the heat caused by today’s microelectronic devices is sufficiently high to trigger the thermoacoustic effect. Based on this finding, we designed a new configuration to utilize this thermoacoustically enhanced convection to significantly lower the temperature. Our approach has a potential application to tackle the heat problems caused by the rapidly advancing microelectronic devices.

八分鐘快速免疫呈色法檢測市售牛乳中有無摻雜粉

台灣過去40 年來,許多牛乳廠商會因牛乳供應量不足摻雜奶粉以增加利潤,為了解決這問題,本實驗提供一種快速且準確的免疫呈色法檢測牛乳中有無摻雜奶粉。因奶粉的加工過程中加熱是必須的,所以本實驗是利用單株抗體只與牛乳中因加熱而變性的蛋白質反應。實驗步驟非常簡單,首先,用一支玻棒沾附待測鮮乳,經過簡短的清洗及化學處理後,玻棒尖端會與經特殊製備的單株抗體反應。最後,將玻棒放入已製備好的溶劑中呈色。當溶液呈現綠色,表示待測乳中摻有奶粉。整個實驗流程只需短短八分鐘。據我所知,該方法是相當具有新穎性且從來未被應用過。這是個令人興奮的發現,足以解決多年來酪農業中牛乳摻雜奶粉的問題。For the last 40-years, owing to the limited supply of commercial raw milk, the industry sometimes would mix the dry milk into the raw milk to increase their profit. To detect whether or not the milk on the market contains the poor quality’s dry milk, I invented a rapid and sensitive colorimetric immunoassay. The assay essentially utilizes a monoclonal antibody that only reacted with the thermal denatured protein presented in the dry milk. First, a glass tip-stick was dipped in to the milk to be tested. Second, following a brief wash and chemical treatment, the glass tip was reacted with the monoclonal antibody that has been specifically produced. Finally, the glass tip was dipped into a reagent containing developer. When the solution develops a color in green, it indicates the milk definitely contains dry milk. The entire procedure only takes 8 minutes to finish. To the best of my knowledge, this method is novel and has never been shown before. It represents an exciting discovery that solves the malpractice of mixing dry and raw milk in our dairy industry.

圖變「蜜」碼─蜜蜂視覺經驗的擷取與top-down process

視覺經驗訊息的top-down process能增強動物對影像的辨識能力,這種透過先前學習過的經驗而增進視覺辨識的能力,與一般熟知視覺是由眼睛將影像訊號傳至大腦進行辨識的過程恰好相反,因此被稱為top-down process。本研究以Y型迷宮進行訓練蜜蜂的行為實驗,首先提供無法直接辨識的複雜影像,再經過提出的簡單影像特徵進行訓練後,再以原先無法直接辨識的影像予以測試,證實蜜蜂也具備這樣top-down process訊息的能力。此外,藉由改變各種視覺影像特徵,進一步探討這樣的視覺訊息可能傳遞路徑。藉由擷取、篩選後的重要影像訊息復甦相關視覺經驗以增強辨識能力,有助於蜜蜂以更有效率的方式訪花。蜜蜂大腦體積不到1 mm3,卻有處理如此複雜視覺訊息的能力,其行為與神經機制實值得深入探討。