全國中小學科展

巴西

Mentor Hunt App

The Information Technology (IT) area has shown great growth in recent years, even with the economic recession that 巴西 has been through and the impact of the coronavirus pandemic. It is estimated that by 2024 the area will have a deficit of more than 290 thousand professionals. However, companies still face other difficulties in hiring, especially people who are looking for their first job in the Information Technology area. Most part of these difficulties are lack of qualified manpower and high prerequisites to fill internship or junior positions. As a result, the objective of this project is: to develop a platform that connects people who seek guidance, improvement or professional relocation in the Information Technology area with professionals that already have the experience they are seeking. The first step was a research and analysis of similar platforms in the market, whose proposal involves mentoring or professional connections, and it concluded that there are no services that fully meet the project’s proposal. In the second step, a research was done about mobile development, highlighting Flutter and Firebase platform. The third step defined the application’s features, such as suggestion of users and mentors, search for users, become a mentor, private chat, video calls, Portuguese and English languages, light and dark themes and profile customization. The suggestion of users and mentors is done by a match with the registered users, relating their areas of work (where the user has experience) and the areas of interest of each one. For the coding of the project, Flutter and Firebase technologies were used. To design the app, it followed Material Design specifications. For testing and distribution, the app was published on Play Store, Google’s Android application platform. The tests were performed by both the researcher and a selected group of users to verify if the functionalities were in accordance to what was defined in the beginning of the project. Perceiving the correct functioning of the application, the project achieved the proposed objective. In addition, it expanded its reach area, because it is possible to find users and mentors from any other area of the market.

Biodegradation of Post-Cured Photopolymeric Resin of Stereolithography 3D Printers Using Galleria mellonella Larva.

The present research has as main objective to degrade the post-cured photopolymer of the stereolithography 3D printer resin using Galleria mellonella larvae. It is necessary to consider that the use of materials from 3D printers tends to increase considerably and in approximately seven years about 10% of everything that will be produced in the world will come from this type of printing. Considering also that the increase in population growth and technological development are directly linked to the increase of solid waste on the planet, in particular to polymeric materials, there is a need to degrade and give an adequate end to waste, avoiding a notorious accumulation along the time. For this purpose, Galleria mellonella larvae will be used because of it's comprovated capacity to degrade polyethylene, to find out if it is capable of biodegrading the post-cured resin of the printer. To carry out the research, compositional tests were done in partnership with the SENAI Institute for Innovation in Polymer Engineering, located in São Leopoldo, Rio Grande do Sul, and the creation of the larvae and degradation of the photopolymer will be carried out in partnership with the University Federal University of Health Sciences of Porto Alegre (UFCSPA). The data analysis will be based on the crystallinity determination tests by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and attenuated total reflectance spectroscopy (ATR) that will also be applied in the larvae feces after contact with the polymer to assess for degradation. As a result of the compositional tests, the ATR showed predominantly characteristic absorptions of acrylic resin; in the TGA test, the loss of mass described in the test is related to the loss of mass of organic material, mainly polymer. Finally, in the DSC test a thermal event was observed in the heating of the sample, with peaks at 125 ° C (Tpm), characteristic of fusion, and a thermal event in the cooling of the sample, in 112 ° C (Tpc), characteristic of crystallization. Based on the analysis of the results obtained, it is possible to infer that most of the composition of the photopolymer is acrylic resin, widely used in stereolithography 3D printers. The research has the future objective of isolating the substance into the larvae responsible for degradation so that it can be degraded on industrial scales. The research started in March 2020 and is still under development due to the COVID-19 pandemic, which compromised the planned tests.

EVALUATION OF THE SURFACE TENSIO, LARVICIDAL AND ANTIBACTERIAL ACTIVITY OF PLANT EXTRACTS FROM THE LEAF OF THE ARACA TO COMBAT THE PROLIFERATION OF THE Aedes aegypti MOSQUITO IN STILL WATER CONTAINERS

The Aedes aegypti mosquito is one of the main transmitters of viral diseases in countries close to the equator. This vector promotes a series of generalized endemics that are difficult to control and prevent in these regions. Furthermore, the presence of bacteria in the environment favors the proliferation of mosquito larvae, which increases the probability of Aedes aegypti reproductive success. The Araçzeiro (Psidium guineense Sw.) is a plant present throughout the Brazilian Atlantic Forest and has in its composition, especially in the leaves, several substances that can be used to solve problems. Thus, we sought to verify the activity of flavonoids and polyphenols in terms of their antibacterial potential and the performance of saponins in their larvicidal potential, as well as surfactant, in order to prevent the accommodation of the mosquito in the water at the time of egg deposition and larvae respiration. The saponins were extracted from the araçazeiro leaf using a hydroalcoholic solvent and the flavonoids/polyphenols using methanol, the latter being subsequently rotaevaporated to maintain the non-toxic nature of the extract. Through the aqueous extracts, the content of total saponins by UV-VIS spectrophotometry, surfactant activity, larvicidal activity and toxicity were determined. In relation to the ethanolic extracts, the content of polyphenols and total flavonoids by UV-VIS spectrophotometry and high performance liquid chromatography (HPLC), antibacterial activity and toxicity were determined. The results showed that the aqueous extract has a satisfactory amount of saponins, as well as a surfactant potential due to the formation of foam and larvicidal activity in the two highest concentrations of the extracts. Ethanol extracts showed phenolic acids, especially gallic and ellagic acid, and flavonoids, especially catechin and quercetin, and antibacterial activity in most of the worked concentrations. Both extracts (aqueous and ethanolic) showed a dominant nontoxic character, which favors their use without risk to the environment, having an alternative and sustainable potential for controlling the proliferation of the Aedes aegypti mosquito.