全國中小學科展

環境工程

終結保麗龍污染!---利用保麗龍廢棄物處理重金屬廢水之研究

保麗龍(EPS)由於無法分解一直是環境保護的嚴重困擾。本研究是將保麗龍改質為陽離 子交換樹脂(我們稱為”保麗龍膠(EPSR)”),藉以吸附重金屬廢水中的銅離子。研究內容包括: 保麗龍膠之特性、吸附銅離子之最佳條件、保麗龍膠之再利用及最終產物之固化,企圖提供 一個解決保麗龍汙染之整套方案。 我們採用五種日常生活中常見的保麗龍廢棄物進行測試。首先將它們依下列程序處理: 丙酮溶解→硬化→打碎→與濃硫酸共煮三小時→浸於50%硫酸溶液中→沖洗→以水浸泡,將 廢棄保麗龍磺酸化為保麗龍膠。在這五種保麗龍膠之中,5 號膠(由一般家電之保麗龍襯墊所 製成)具有最佳之磺酸化比例(莫耳分率)、吸附量及吸附速率。經檢測保麗龍膠的特性之後, 發現保麗龍膠為多孔物質,具有-SO3H 的官能基,吸附的模式是先進行化學吸附,高濃度 時兼具物理吸附。 保麗龍膠對銅離子的吸附研究是以一個自動化之差動電壓檢測器進行監測,同時用電腦 精確的擷取數據。保麗龍膠達到吸附銅離子的最佳條件依次為:使用細粒的5 號保麗龍膠、 銅離子溶液的濃度為50 ppm、操作溫度為10 ℃、廢水的流速為每分鐘為 5 c.c.、以及pH 值約為4.30。多次吸附確可將金屬離子幾乎完全去除。在一次初步測試中,我們成功地將三 個自製的微型保麗龍膠儲存槽串聯,進行管柱式的多次吸附,使得高吸附率時間可以維持3.5 小時以上。 保麗龍膠達到飽和吸收後,我們再將保麗龍廢膠與由硫酸廢液和碳酸鈣製得的硫酸鈣混 合,製成黏土,可以製作造型磁鐵、分子模型等物品,達成最終產物之廢物利用,完成廢棄 保麗龍再利用之完整方案。EPS waste is a severe problem for environment due to its non-dissolvability. This research proposed a method to transfer the EPS waste to cation exchange resin, designate as EPS rubber (EPSR), which could absorb Cu-ion in wastewater. The study included the character of the EPSR, the optimal conditions for Cu-ion absorption, the reusability of the EPSR and the solidification of the final production, trying to terminate the pollution of EPS waste. Five different EPS wastes were tested. They were processed as following: solved with acetone => hardening => smashing => boiling with sulfuric acid for three hours => soaking in 50% sulfuric acid solution => rinsing => soaking with water. Then the EPS were sulfonic acidified as EPSR. Among these five EPSR, EPSR-e, which was obtained from the EPS usually used for the pad of electric appliances, exhibited the best sulfonated ratio (in mole), adsorption quantity and adsorption rate. EPSR has a porous structure with a -SO3H functional group. The mechanism of adsorption is the chemical adsorption with a physical adsorption at high concentration. The Cu-ion saturating adsorption was investigated with a automatical differential-voltage detector, enabling the data to be precisely acquired by a computer. The optimal conditions for Cu-ion adsorption were employing fine EPSR-e particles, a Cu-ionic solution of 50 ppm in concentration, a flow rate of 5 c.c. per minute and a pH of about 4.30 at 10 ℃. Multiple adsorptions could remove Cu-ions almost completely. In a preliminary test, three EPSR-e absorption cells were seriated as a column, achieving a high-absorption condition to be maintained for more than three and a half hours. After the adsorption was saturated, the final production were mixed with calcium sulfate obtained form the earlier sulfuric acid waste solution to become the clay, acomplishing a total solution for EPS waste reuse.

以基因轉殖斑馬魚胚胎作為生物感測器偵測環境污染物之研發與應用

近年來,水污染成為全球性重大議題,被指出可能為造成生物疾病與死亡的主要因素。因此發展環境感測動物,用來偵測環境汙染,以提供足夠應變時間相當重要。本研究利用斑馬魚作為模式動物。研究結果指出,當斑馬魚胚胎經過逆境(stress)處理,如熱休克、酒精與thapsigargin (ER stress inducing drug)時,ER stress相關基因如PERK、chop、Bip、ATF3 mRNA和CHOP蛋白質均大量表現,顯示斑馬魚有潛力作為in vivo研究ER stress的模式動物。之後,我們利用轉殖品系Tg(KY43-3)(帶有人類uORFchop-GFP報導基因)證明人類uORFchop片段抑制下游轉譯的特性在不同物種中具有高度保守性。而當Tg(KY43-3)胚胎受高低溫、缺氧、重金屬、農藥等汙染逆境刺激後,其綠螢光被誘發表現;此外Tg(KY43-3)胚胎可在胚胎死亡前反應逆境造成的傷害而表現綠螢光,故我們可由觀察綠螢光表現判斷環境汙染物是否對生物造成傷害。綜合以上,Tg(KY43-3)可作為研究或偵測各種環境污染逆境的環境監測動物。

滴水不漏-冷氣水回收應用分析

當我們在開車享受冷氣同時,此時冷氣水正一滴一滴的滴水,造成水資源的浪費,在環保意識抬頭的今天,我們即針對此一問題進行研究,主要將冷氣水回收起來,並運用在補充雨刷水箱或者提供引擎水箱或冷凝器降溫作用,是否達到提高引擎工作性能及降低冷氣冷房效果,進而達到「資源回收」的。實驗結果證明在補充雨刷水系統最符合環保概念;另在引擎水箱噴水作用時,可縮短風扇運時間並增加停止運轉時間,可增長風扇使用壽命,對下水管溫度亦可降低,可防引擎過熱;在冷凝器噴水作用中亦能明顯提升汽車冷房效果。When we enjoyed driving with cool air from air-conditioning, the condensed water from air-conditioning system is dripping from the system drop by drop. It caused the issues of the waste of water resource. Facing the greater public awareness of environmental protection issues in Taiwan, we are focusing on this issue to have further research. The idea is to re-cycle the air-conditioning condensed water and re-fill it in the water tank of wipers, the water cooling tank of engine or the cooling system of condenser. The purpose is to improve the performance of engine and enhance the cooling efficiency of air-conditioning system. It is helpful to meet the objective of water resource recycling. The result of experiment has shown that re-filling water in the water tank of wipers meet the goal of environmental protection well. Also, the water injection in the water cooling tank of engine could reduce each operation time of cooling fan and increase the idle time of cooling fan as well. It prolong the equipment life of cooling fan and lower the operation temperature of Low water pipe which prevent the engine overheating. Meanwhile, It is proved that the water injection in the cooling system of condenser can enhance the cooling efficiency of air-conditioning system.

大自然的奧妙~土壤自我淨化能力

大氣圈、水圈與土壤圈是構成自然環境的三大領域,三者之間相互的影響,原本這些空間都具有極大的包容力,亦所謂「自淨能力」,許多的物質進入其中皆會被氧化分解或稀釋而消失於無形。近年來由於工業發展、人口增加,產生大量的廢棄物,長期、密集且迅速的堆積於環境中,使得天然的自淨能力無法應付而失去功能,造成嚴重的後果。就土壤而言,雖有較佳的自淨能力,但是一受污染,除了嚴重破壞土壤品質之外,同時也會直接或間接污染水源 (如:地下水)及空氣,對動植物造成危害,並且難以回復,實不容忽視。本實驗探討:一、土壤淨化能力是否受到不同地區、不同土壤性質的影響。二、同樣的土壤,對不同的污染物(色素、肥料、重金屬)淨化能力強弱的影響。實驗結果顯示大肚山土壤過濾溶液中的色素、磷、及重金屬中的鉻、鎳、銅的能力較中寮及大甲土壤強,只有氮與鉀的過濾能力較大甲土壤差,所以這次實驗中大肚山土壤有最好的污染淨化能力。實驗結果將來也許可以應用於土壤處理場址之適宜性評估。The air, water and soil are three parts of the nature. They affect each other. In fact, they have the "self-purity ability" - they can disassemble many polluted thing by this kind of self-purity ability. These years, because the industry development and the population explosion make lots of waste, the self-purity ability cannot do its best. The soil has better self-purity ability, but if it is polluted, it will not only pollute the water (ex: underground water) and the air, but also damage the animals and plants. We cannot ignore the serious result. This experiment will discuss:1. If the soil self-purity ability is affected by different area and different soil specificity? 2. The different purified results according to the different pollutant (ex: color, fertilizer and heavy metal) in the same soil. Results showed that Da-Du-San soil had strong ability then Chung-Liao and Da-Cha soil in filtrated color, phosphor, chromium, nickel and copper in the solution, but had weak ability then Da-Cha soil in filtrated nitrogen and potassium. Therefore, Da-Du-San soil had the beast pollution-purity ability in this experiment. In the future, results may be applied to the suitability evoluation of the soil treatment place.

『氫化-甲烷化』程序厭氧發酵產能系統之建立

本研究之目的,乃針對氫氣及沼氣發酵的結合,建立『氫化-甲烷化』程序的厭氧發酵產能系統,取代傳統『酸化-甲烷化』的厭氧發酵程序,以期提升整體厭氧處理的產能效率。研究以蔗糖、畜產廢棄物(豬羊兔糞)、鳳梨皮廢棄物為基質,先個別以產氫菌35℃發酵收集氫及產甲烷菌40℃發酵收集沼氣,進一步再將產氫廢液進行二次發酵收集沼氣。試驗結果顯示,經過氫化-甲烷化的二次發酵後,能量總產值較傳統酸化-甲烷化發酵程序的產能提升,提升倍數分別為蔗糖基質:1.16倍;滅菌鳳梨皮基質:1.17-1.27倍;未滅菌鳳梨皮基質:2.62倍。以畜產廢棄物為基質,進行產氫菌及產甲烷菌靜置與連續流培養,以兔糞基質氫氣與甲烷產量最高。酸性的產氫廢液經二次發酵後,pH值皆有趨向中性偏鹼的變化。

應用吸水高分子螯合重金屬離子及奈米銀的製備

聚丙烯酸是尿布中吸水成份,若被隨地丟棄勢必對環境造成污染。分析其結構,由於存在對重金屬離子具螯合作用的羧基,因此,可用於捕捉重金屬離子,作為偵測污水離子的利器。另外,若將螯合的銀離子以化學還原法製成奈米銀,將可應用於抗菌。研究結果有: \r (1)PAA對Mn、Fe、Co、Ni、Cu、Zn、Ag等離子具有明顯螯合效果。 \r (2)螯合反應:PAA+Mn+ [PAA-M]n-x+xH+,其可利用濃鹽酸使其再生。 \r (3)螯合能力以Fe3+最強,Zn2+(Mn2+)較弱。 \r (4)螯合離子的最小極限為10-3(M),我們採樣的廢水有重金屬污染,推測濃度大於10-3(M)。 \r (5)成功將螯合的Ag+製成奈米銀,為金黃色,屬於球形銀,甲醛濃度愈高,奈米粒徑愈小。 \r (6)奈米銀與銀離子在抗菌上的確有明顯效果,帄均粒徑小,抗菌效果越強。

環境友善方法: 用牛糞吸附重金屬並製作成觸媒

有毒重金屬是一個全球矚目的環境污染問題,為了解決這問題,人們常使用沈澱法和螯合劑兩種主要化學手段來吸附重金屬物質,這些方法的缺點是在某些情況下(如:酸雨),重金屬可能會再溶出污染環境。本研究旨在提出一個低成本且環境友善,能整治重金屬污染的新方法,使用牛糞來吸附重金屬離子,再將此已經吸附重金屬的牛糞回收製成觸媒。研究發現摘要如下: (1).磷酸鹽適合作為吸附劑,以穩定重金屬離子。 (2).發酵處理的牛糞由於微生物分解有機質,使成分中磷酸鹽含量變高,牛糞磷酸鹽愈高吸附重金屬離子的效果愈好。 (3).牛糞置於Cu2+、Ni2+水溶液,能有效吸附Cu2+、Ni2+離子,在應用上可預防重金屬污染地下水源。 (4).模擬土壤淋融的實驗中,超過99%的金屬離子可被牛糞固定於土壤中。 (5).回收吸附的重金屬離子牛糞,製作成活性碳觸媒,可進行脫色實驗,達到回收利用的目的。

Fenorhythmes Of Yakut Taiga. The Calendar Of The Nature Of Olekminsk Reserve.

“Natural phenological per iodization of a year is called nature calendar…”\r The role of rivers in nature and man’s life is great. They connect people and cultures, form climate, give life to the thousands of living beings. \r In the tasks of researches there were:\r 1. To determine the peculiarities of seasonal dynamics of alive and inanimate nature of Olekminsk reserve;\r 2. To find out (to reveal) the peculiarities of phenological seasons of the territory of Olekminsk reserve. \r _ To determine of phenoindicators which are separate from phenological seasons \r _ To establish the middle dates of the advance of phenological phenomena \r _ To determine the duration of phenological seasons of a year.\r According to the general nature of plants the territory Olekma-Amga interriver refers to the provincial of pine-needles taiga zone, to Verkhne-Lensky flora area. Predominating part of the plants of the reserve relates to boreal types. The flora of the superior plants of Olekminsk reserve includes 654 types. The fauna of area is presented by 40 types of mammals from 45 living in the south of Yakutia, 187 types of birds, 2 types of amphibians and 2 types of reptiles.\r Besides, phenological researches were conducted on the testing area of school ecological control and during arranging of field ecological schools since 2000 till 2010. \r In all 169 phenological phenomena were analyzed from different phenological seasons of year for the last seven years. The gross amount of analyzed information composed 4000 information units.\r Results and conclusions:\r 1. The peculiarities of the seasonal changes of natural complexes were determined for the first time for south of Yakutia on the example of the territory of Olekminsk reserve. The calendar of the nature of Olekminsk reserve was composed. The analysis of phenological observations allowed establishing the row of phenoindicators, with the help of which we can determine advance of that or either phenological stage, as well as the disposition of current vegetative period can be forecasted. The information maybe used in organizing of the measures of nature protection, struggle with pests and the diseases of useful plants, parasite and tranmissive diseases of man and home cattle.\r 2. Geographic position and climatic peculiarities of territory form the peculiarity of seasonal rhythms of Olekminsk’ reserve’s nature.\r 3. All components of landscape in its seasonal changes tightly are connected with each other with causative-investigation ties having formed the definite complex of characteristic phenomena per the stage of seasonal development. \r 4. The carried out analysis of the primary materials of the Annals of the nature of the reserve and information from the field of ecological schools for seven years since 2001 till 2007 allowed detecting the peculiarities of phenoclimatic seasons of the territory of Olekminsk reserve.\r 5. Phenological and temperature outsets of phenological stages were determined.\r 6. Intervals and average of many years dates which are characteristic for phenological phenomena are determined.\r 7. The calendar of the nature of Olekminsk reserve was made on the basis of the processed information.

Bio-Conversion of TiO2/UV System Pretreated Rice Straw to Ethanol

1. Purpose of the research :\r One of the greatest challenges for 21st century society is to meet the growing energy demand for transportation, heating and industrial processes. U.S. and Brazil are currently converting corn starch and sugarcane juice into ethanol; however, these are edible products. To stop global warming and poverty, we tried to determine to develop new pretreatment method to produce biofuel using non-edible parts of agricultural products.\r 2. Procedures :\r For our research purpose, we conducted ‘Preparation of Rice straw - Powder’, ‘Pretreatment Method of Rice Straw and Statistical Optimization Using Response Surface Methodology’, ‘Enzymatic Hydrolysis for Saccharification of Pre-treated Rice Straw’, ‘Analyses of Pretreatment Efficiency and Production of Glucose and Xylose Using HPLC & TLC’, ‘Ethanol Fermentation and Recovery’, ‘Strain Improvement for Pichia’.\r 3. Data :\r For the first time, rice straw was pretreated in a novel manner using hypochlorite-hydrogen peroxide (Ox-B) solution. The optimum pretreatment condition was analyzed by response surface methodology and the pretreated rice straw was hydrolyzed using two kinds of enzymes. Following hydrolysis, Saccharomyces cerevisiae and Pichia stipitis were inoculated for ethanol production. The optimum condition was 60 min pretreatment using Ox-B solution containing 0.6% hypochlorite and 25% hydrogen peroxide for 1 g rice straw in 240 ml total reaction volume. The Ox-B solution treatment was an essential step for efficient hemicelluloase hydrolysis. Under these conditions, 406.8 mg glucose and 224.0 mg xylose were obtained from 1 g rice straw. The structural change of rice straw after pretreatment and enzyme hydrolysis was examined by scanning electron microscopy. With the 10% initial sugar concentration, the final ethanol concentration was about 3.46%, which is 90.5 % of stoichiometric and fermentation efficiency yield.\r 4. Conclusions :\r Rice straw was pretreated in a novel mean by using an Ox-B solution broadly used in potable water treatment. Pretreatment modified the structures of lignocelluloses. The Ox-B solution treatment was an essential step for efficient hemicelluloase hydrolysis. Pretreatment modified the structures of cell wall. Further optimization studies of the fermentation process and strain improvement research (for derepressed mutant) are in progress. In the future, I hope to see cultivators to move by the ethanol produced from rice straw and agricultural wastes.

幾丁聚醣包埋酵母菌球株對重金屬離子廢水處理

本實驗的目的,就是希望利用幾丁聚醣除污的效果,再配合酵母菌所能累積金屬的能力,以酵母菌包埋於幾丁聚醣的方法,吸附廢水中的重金屬離子.用Langmuir 理論求得飽和吸附量,進而求出休眠酵母菌-幾丁聚醣所能吸附金屬離子(銅)0.2048(g/g)的數量,與活化酵母菌-幾丁聚醣所能吸附金屬離子(銅)0.1750(g/g),並比較回收效率,以應用於處理工業上工廠所排放的廢水. In this experiment , we want to use the ablation of chitosan and the accumulation in metal of saccharomycete to absorb the metal cation of waste liquid . In the process , we embedded the saccharomycete in chitosan to absorb the metal cation , and obtained the impregnate absorption of dormant saccharomycete and activated saccharomycete by the theory of Langmuir . Then , we compared the efficiency of them and applied them to work on the waste liquid in industry.