全國中小學科展

環境工程

以甲醇與甲酸為營養源評估甲醇利用菌的碳利用效能

全球暖化造成氣候危機,對人類生存的威脅愈來愈大,達成巴黎協定的淨零碳排刻不容緩。本研究擬以甲醇利用菌(Methylorubrum populi )做為碳捕集封存與再利用(Carbon Capture Utilisation and Storage/CCUS)的生物工廠,將甲醇(CH3OH)及甲酸(HCOOH)等單碳化合物合成生物質。經全基因定序及序列分析得知,M. populi 具有可以利用甲醇、甲酸進行生合成的多條路徑。同時將菌液以不同比例的甲醇與甲酸為碳源,在不同酸鹼值中培養,測量其生長曲線,由此推得倍增時間等各項參數,並分析乾燥後的菌體各元素佔比。分析結果顯⽰,在 pH6.3、以甲醇甲酸比 9:1培養 M.populi,碳儲存率可達 46.0%且在指數期生長快速,可達到有效減少溫室逸散至大氣的目的。

ReCiPla - Cyclic Soil Microplastic Remover

GROSSMANN, João Miguel Sastre. ReCiPla - Cyclic Soil Microplastic Remover: A way to remove microplastics from soil using electrostatics. 2023. 28 p. Research report – Scientific Apprentice Program, Colégio Dante Alighieri, São Paulo, 2023. Microplastics are the largest form of physical pollution on the planet. Affecting everything from terrestrial and aquatic environments to the air, compounds up to 1 micrometer in size are present inside the human body and can intoxicate the main organs in which they are found, such as the lungs, spleen, liver, and heart. Therefore, methods of removing these compounds from nature are essential, which is why this research is based on electrostatically removing MP from the soil. To this end, a vibrating conveyor belt was designed that would act in conjunction with a plate electrified by a Van de Graaff generator to separate the plastic compound using electric field induction. After characterization tests to quantify the voltage produced by the generator, which produced an average of 95 kV, the vibrating belt was made and will be used later in conjunction with the electrostatic method. This methodology suggests that it’s a success even after the electrified plate was applied to its structure. It carried out the proposed processes, such as moving the test masses, vibrating them, and fully supporting the electrified plate. In addition, the electrostatic removal method was tested to verify its efficiency and applicability. It was found that the removal of microplastics ranged it from 10 to 20% efficiency, suggesting it to be an effective method for separating microplastics. It should be noted that these statistics will be improved as the research progresses. In this way, the research proved capable of establishing an electrostatic removal method, as well as a process for transporting the material to be removed, thus achieving the objectives it set out to achieve. Finally, it should be noted that this research is still under development, with a view to applying the process in conjunction with the conveyor belt to carry out sample tests, as well as improving the removal process in the future to make it more efficient.

可可殼生物炭活化過硫酸鹽降解四環黴素之性能、機制及其生物毒性研究

可可殼為鮮少被有效利用的農業廢棄物;四環黴素(TC)為水體中常見的有機環境賀爾蒙,殘留過量在環境及生物體中會造成威脅;生物炭將高纖維植物在無氧環境下高溫熱裂解,低成本、多孔且富含官能基。過硫酸鹽(PMS)具有強氧化性,且降解 TC 後產物較無害,已被廣泛應用。綜上所述,本研究欲以可可殼生物炭(CSBC)活化 PMS 降解 TC,促進永續發展。 本研究燒製不同溫度的 CSBC,並探討相關反應機制及參數後,找出的最佳化條件為: 300 mg/L CSBC-700 活化 0.3 mM PMS 降解 50 ppm TC。而後進行斑馬胚胎 96 hr 急性毒測試, 測試投放不同劑量的 TC、CSBC、PMS 之魚隻孵化與存活情形,並將最佳化條件投入測試後,對仔魚無發育與存活上的影響,可驗證本研究的應用性,望找出淨化環境水體的方法。

Anti-forma Chitogel

Formaldehyde is an air-borne, carcinogenic indoor pollutant. It may cause adverse effects on human health such as irritation of eyes and respiratory system. Shells of hermetia illucens, Black Soldier Flies (BSF) are leftovers when the insects mature from pupae to adults. BSF shells are rich in chitin which can be converted into chitosan by demineralisation and deacetylation. Chitosan and its ammonium salt (chitogel) can remove formaldehyde via condensation of water. In this investigation, the efficiency of removal of formaldehyde by different substrates were compared including shells of BSF before and after demineralization, deacetylation and action of vinegar; and common commercial products and Anti-Forma Chitogels made from shells of BSF and some crustaceans. Anti-Forma Chitogel of BSF was found to be effective in removing (91.2%) formaldehyde (1:20 by mass) among shells of BSF with different treatments and its efficiency was better than all commercial products tested. Concentration of formaldehyde in the container with deacetylated Anti-Forma Chitogel is 0.54 mg/m3. It removed 74.8% of formaldehyde compared to the control (2.14 mg/m3). Concentration of formaldehyde in the container with Anti-Forma Chitogel without deacetylation is 0.76 mg/m3 . It removed 64.5% of formaldehyde compared to the control (2.14 mg/m3). The Anti-forma Chitogel of BSF was found to be eco-friendly with high formaldehyde removal efficiency when placed in a drawer (removal of 54.8% of in 24 hours), the chamber of a newly renovated room (removal of 84.9% in 30 minutes reducing the conc. of formaldehyde from 0.53 mg/m3 to 0.08 mg/m3; cf. the safety limit of formaldehyde <0.125mg/m3) and drawers of a new wardrobe (removal of 83.7% at 20.2oC in 1 day reducing the conc. of formaldehyde from 0.49 mg/m3 to 0.08 mg/m3 & kept the conc. of drawers below 0.125mg/m3 most of the time over a month when temperature was below 21oC). Conc. of formaldehyde in air-tight boxes (5g of construction adhesive in 9.3 dm3) with air purifiers with and without Anti-forma Chitogel as filter before and after 3 hours was reduced by 44.5% (from 6.25mg/m3 to 3.47mg/m3 ) and 27.7% respectively showing that Anti-forma Chitogel as filter in air purifier outperformed that without by 160%. Besides, anti-forma Chitogel is antibacterial, so it would also kill bacteria when used in air purifiers. [1] proving that Anti-forma Chitogel is effective in removal of formaldehyde on the spot and can be applied to households. It can also help achieve Target 3.9 and 12.5 of the Sustainable Development Goals of the United Nations.

Autonomous Ecosystem Surveillance Robot

Our project, the Autonomous Ecosystem Surveillance Robot, aims at closing the aquatic gap in biosecurity measures by including several functions, such as water quality monitoring, aquatic species monitoring, and seabed topology surveillance. Several instances have shown the need for such a system, as demonstrated below. The United States Corps of Engineers completed an electrich fish barrier in the Chicago Sanitary and Ship Canal in 2002, in order to prevent the invasive Asian carp from moving into the Great Lakes. The introduction of the Asian carp into the Great Lakes would be an ecological disaster, as the Great Lakes provide an ideal habitat for the carp to proliferate, choking out native fish species that exist there. This would result in a major loss for the fishing industry in the area. One of the Great Lakes, Lake Erie, suffers annual algae blooms threats, which affect up to 12 million people in the Great Lakes region of the United States and Canada. These algae blooms are caused by runoff pollution, which occurs when rainfall washes fertilizer and manure from farmland into Lake Erie, fueling algae that can make water toxic to humans and animals alike. In addition, there are many existing customs regulations around the world that are set in place to ensure biosecurity of national ecosystems, such as in Taiwan, where it is illegal to bring pork from abroad. Despite this, there still exists a very large gap in biosecurity measures; that of the aquatic nature. Through these three functions, we have the ability to protect local aquatic biodiversity via the ability to detect invasive species, therefore allowing authorities to properly deal with them. This allows less harmful measures to be taken against them, thereby limiting collateral damage to endangered native species. Coupled with the ability to map bodies of water, the Autonomous Ecosystem Surveillance Robot is an extremely potent tool to preserve aquatic biodiversity and to ensure biosecurity of local waters.