全國中小學科展

環境工程

電化學還原結合薄膜蒸餾技術實現高效氨氮資源循環回收

本研究旨在開發一個綜合系統,利用電化學還原技術將水中硝酸鹽轉化為氨氮,並結合薄膜蒸餾技術進行氨氮的濃縮與回收,實現資源循環利用與廢水處理的雙重目標。研究首先評估了不同操作電壓對電化學還原效率的影響,優化了將硝酸鹽轉化為氨氮的效果,當驅動電壓為1.2V時,可有較完全的硝酸鹽還原效果,並無硝酸鹽的中間產物亞硝酸鹽,硝酸鹽去除率最佳接近90%,氨氮產率亦可達7000mg-N/h/m2加上其能源消耗亦較低,因此1.2 V為最佳操作參數之選擇。隨後,針對薄膜蒸餾技術的應用效果進行測試,評估其氨氮回收效能。最終,綜合評估了電化學還原與薄膜蒸餾技術的整合應用,結果顯示該系統能有效實現氨氮的資源化回收,對廢水中的氮污染治理具備潛在應用價值。

智慧蚊監-3D 列印與機器學習

氣候變遷加劇了蚊媒疾病對全球公共衛生的威脅,迫切需要創新的解決方案。在台灣,登革熱的傳播主要由蚊蟲滋生所致。為了解決此問題,我們設計了一款三層結構的3D 列印誘蚊器,包括吸引懷孕雌蚊產卵的誘餌層、捕捉蚊蟲的黏膠層,以及防止異物進入的保護層。該裝置成本低、易製作且不需要外部電力,特別適合在資源有限的地區部署。 我們結合校園監測站每日捕捉的蚊蟲數據與氣象站提供的溫度、濕度和降雨等環境數據,運用SARIMA 與隨機森林混合模型進行分析與預測。SARIMA模型負責捕捉蚊蟲數量的季節性與長期趨勢,而隨機森林模型則處理環境變數與蚊蟲密度之間的非線性關係。此混合模型不僅提高了預測精度,還能解析蚊蟲的生態模式,進一步指導誘蚊器的最佳配置。此外,我們還開發了紅外線感測系統,即時偵測蚊蟲活動,為監測提供精準數據。 為評估氣候變遷的影響,我們模擬了不同全球暖化情境下的蚊蟲密度變化趨勢。結果顯示,隨著溫度上升,蚊蟲密度呈現非線性收斂趨勢,但正相關性依然存在,強調了氣候變遷可能帶來的潛在危害。我們還開發了一個網站,用於即時呈現蚊蟲密度預測,幫助政策制定者和公共衛生機構有效應對疾病防控挑戰。 本研究與聯合國永續發展目標(SDGs)中的SDG3(良好健康與福祉)及SDG13(氣候行動)高度契合,展示了結合3D列印、機器學習、即時感測和網路技術應對蚊媒疾病的創新潛力。此系統提供了一個可持續的全球蚊蟲控制模型,為公共衛生、疾病預防及流行病學的未來創新奠定了堅實基礎。

利用碳化含鐵金屬有機架構物進行廢水中金之選擇性回收

本研究旨在利用碳化含鐵金屬有機架構物回收廢棄印刷電路板廢水中的液相金,使用含鐵金屬有機架構物做為吸附劑基材,以不同溫度碳化提升材料對金回收性及金吸附選擇性, 並針對吸附劑材料進行物化特性分析。首先,利用六水合氯化鐵 (FeCl3‧6H2O) 與 2-氨基對苯二甲酸 (2-Aminoterephthalic Acid) 合成 NH2-MIL101(Fe), 並將其碳化後得到 C-NH2- MIL101(Fe) 材料。於金吸附測試中發現 C800-NH2-MIL101(Fe) 對液相金吸附效果優於NH2-MIL101(Fe) 與其他溫度之 C-NH2-MIL101(Fe)。此外, C800-NH2-MIL101(Fe) 在同時具有其他液相金屬的溶液中選擇性吸附能力明顯高於 NH2-MIL101(Fe)。材料之物化特性方面, 於 BET 分析發現 C800-NH2-MIL101(Fe) 的比表面積可達 180.9 (m²/g),說明碳化後可保留原材料特性;由 XPS 分析證實 C800-NH2-MIL101(Fe) 部分鍵結型態改變使其還原能力增強, 證實 C800-NH2-MIL101(Fe) 是具有實際應用潛力的良好吸附劑,可以進一步增量、優化製成並評估商業應用經濟效益。

二氧化碳捕捉術-銅鋅雙金屬奈米觸媒對二氧化碳還原反應效能及機制之研究(Carbon Dioxide Capture Technology: Study on the Efficiency and Mechanism of CO2 Reduction Reaction Using Copper-Zinc Bimetallic Nanocatalysts talyst)

本研究以電化學二氧化碳還原反應(CO2RR)技術將二氧化碳還原成高經濟能源燃料,使用水相合成法製備Cu/Zn銅鋅雙金屬奈米觸媒,改變金屬間的比例: Cu2Zn1、Cu1Zn1、Cu1Zn2以及通入N2/O2/H2 熱處理改變觸媒氧化態,而改變氧化態可以在化學性質、催化活性、電子結構等方面有重要影響使其催化出不同反應路徑,改變產物生產效率和選擇性。用能量散射光譜儀、X光繞射儀鑑定奈米觸媒間金屬比例和晶型;線性掃描伏安法和氣相層析儀探討二氧化碳還原法拉第效應和生產效能。結果發現Cu2Zn1-N2能產生最多的CH4,因改變氧化態使其效能高達53.03%; Cu1Zn2產生最多的CO,效能為44.99%,推論為鋅的比例較高所致。

新型微生物燃料電池於能源/水再生之研發

本研究探討新型微生物燃料電池(MicrobialFuel Cell, MFC)在能源再生及水資源處理中的應用。隨著全球氣候變遷和污染問題加劇,開發低碳、可持續的綠色能源為當務之急。MFC利用微生物將廢水中的有機物轉化為電能,不僅達到低成本、低碳排放的優勢,還具有處理廢水、產生電力等功能。本研究使用不含 「全氟/多氟烷基物質 (per- and polyfluorinated alkyl substances,PFAS)」的煤灰陶瓷隔離膜,並將市售的石墨氈電極進行改質, 以探討電極表面積(3x3、4x4、5x5 cm²)及不同材料(石墨紙、石墨氈、改質石墨氈、碳布)對MFC性能的影響。結果顯示,在電極表面積為4x4 cm²表面積時產電效率以及去除污水的效率最佳,顯示較小的表面積差異對MFC影響效果不大;電極材質則以石墨紙表現最優,但經改質的石墨氈在發電效果及去除污水的效率上皆接近石墨紙。本研究可為MFC在污水處理和能源再生中的應用提供了重要的數據參考。

電化學還原結合薄膜蒸餾技術實現高效氨氮資源循環回收

本研究旨在開發一個綜合系統,利用電化學還原技術將水中硝酸鹽轉化為氨氮,並結合薄膜蒸餾技術進行氨氮的濃縮與回收,實現資源循環利用與廢水處理的雙重目標。研究首先評估了不同操作電壓對電化學還原效率的影響,優化了將硝酸鹽轉化為氨氮的效果,當驅動電壓為1.2V時,可有較完全的硝酸鹽還原效果,並無硝酸鹽的中間產物亞硝酸鹽,硝酸鹽去除率最佳接近90%,氨氮產率亦可達7000mg-N/h/m2加上其能源消耗亦較低,因此1.2 V為最佳操作參數之選擇。隨後,針對薄膜蒸餾技術的應用效果進行測試,評估其氨氮回收效能。最終,綜合評估了電化學還原與薄膜蒸餾技術的整合應用,結果顯示該系統能有效實現氨氮的資源化回收,對廢水中的氮污染治理具備潛在應用價值。

Silver nanoparticles-loaded titanium dioxide coating towards immobilized photocatalytic reactor for water decontamination and bacterial deactivation under natural sunlight irradiation

The environmental implications of rapid industrialization, including rising pollution, depleted resources, the effects of climate change brought on by global warming, and unrestrained groundwater extraction, are contributing to a growing water scarcity crisis [1-3]. The improvements in quality of life are largely attributable to the innovations in manufacturing technology made possible by the Industrial Revolution, but these innovations also pose risks to the natural world and human health [1-3]. The textile business uses a wide variety of raw materials, including natural fibers like cotton as well as synthetic and woolen fibers, and the chemical components of dyes are just one example. The annual output of synthetic dyes is around 700,000 tons, and there are over 10,000 different varieties available. As much as 200,000 tons of synthetic dyes are released into the environment every year due to the inefficient dyeing technique commonly employed in the textile industry. According to the World Bank, the processing of textiles for dyeing and finishing accounts for between 17 and 20 percent of industrial wastewater [1-3]. Textile wastewaters contain a high biological oxygen demand (BOD), chemical oxygen demand (COD), nitrogen, color, acidity, high suspended particles, high dissolved solids, surfactants, dyestuffs, heavy metals, and other soluble chemicals [3] due to the variety of dyes used to color textile items. In particular, water-soluble reactive and azo dyes are employed to obtain the required color. Ten to twenty percent of the dyes used end up in the effluents, where they might harm wildlife and the ecosystem (carcinogenic or mutagenic). Headaches, nausea, skin irritation, respiratory difficulties, and congenital deformities are only some of the health problems linked to exposure to textile wastewater. There are repercussions for aquatic ecology, environmental biodiversity, and the quality of receiving water bodies. New, low-cost, and highly effective water treatment methods are needed to deal with polluted wastewater. Adsorption and coagulation, two common water purification methods, just concentrate pollutants by shifting them to other phases; they do not "eliminate" or "destroy" them. Sedimentation, filtration, chemical oxidation, and biotechnology are all examples of conventional water treatment methods, but they all have their drawbacks. These include insufficient removal, high chemical reagent consumption, high treatment costs, long treatment times, and the creation of toxic secondary pollutants. New water treatment procedures are needed to improve the quality of treated effluent [1-3]. The use of semiconductor particles in photocatalysis is gaining appeal as a solution to global pollution problems due to its shown efficiency in degrading a wide variety of contaminants. Photocatalyst-coated surfaces-based reactors have proven to be practical for long-term operation over photocatalytic powder-based reactors (i.e., slurry-based reactors) [4-5]. As a promising photo-electrode and photocatalyst, titanium dioxide (TiO2) has enjoyed wider applicability in photocatalytic hydrogen generation, solar cells, and remediation of organic contaminants among other photo-catalytic applications [4-6]. TiO2 has been recognized as one of the low-cost, most effective, and fascinating photo-catalyst as a result of its interesting thermal and chemical stability, desirable electronic features, others, and environmental benignity [6-8]. Pristine TiO2 semiconductor is characterized by a wide band gap that can only utilize the UV part of the light spectrum with a wavelength of less than 385 nm, which is just 5% of the sunlight energy capacity. Spectrum usability extension to visible regions warrants further and extensive research study [8-10]. Additionally, the quickness of the recombination of photo-generated holes and electrons further restricts the practical applicability of the semiconductor [10-12]. It is highly desirable to develop a cost-effective scalable strategy to over these drawbacks toward sustainable development and a clean environment using only natural sunlight irradiation [5-11]. In addition, it is preferred to fabricate them as films rather than powders as photocatalytic immobilized reactors are more practical than powder-based reactors [4-8]. Dye sensitization, supports, magnetic separation, and surface modification by doping with non-metals, metals, and transition metals and coupling with other semiconductors have all been used to enhance the photocatalytic activity of TiO2 photocatalyst. Higher photonic efficiency can be attained through the synergistic fine-tuning of features such as physical, chemical, and electronic, and these composites and hybrid materials based on TiO2 are creating a big trend. Doping has been widely studied as a means of altering the surface of TiO2. Rare earth metals, noble metals, and transition metals are all discussed in the existing literature on the surface modification of TiO2 doped with cations [4-12]. In this study, for the first time, Ag nanoparticles loaded mesoporous TiO2 coating was prepared and applied as an immobilized photocatalytic reactor for water decontamination and bacterial deactivation under natural sunlight irradiation.

邁向淨零之低碳海水淡化整合技術

「2030 永續發展目標」,其中 SDG6 clean water 和 SDG13 的 climate action 讓我們開始思考怎麼樣可以讓人人能享有乾淨衛生的水以及面對氣候變遷的調適。我們建置一套液流式脫鹽電池實作海水淡化實驗,並將電極以碳布作修飾, 在 0.4 V 的操作條件下進行了 450 分鐘的海水淡化實驗。海水的導電度在淡室中從 45.36mS/cm 降至 0.29 mS/cm,並於濃室中提升至 76.17mS/cm。其 ASRR 為726.98μg/min/cm2,所需能耗為 55.29kJ/mol,電荷效率達 69.79%,成功的將海水淡化。分離後的鹵水再與二氧化碳及澎湖的玄武岩進行礦化反應實驗,在鹵水溶液礦化封存反應初期,二氧化碳與水溶液中大量的陽離子反應使得水溶液整體的濃度及 pH 值下降,使得整體反應趨向於玄武岩溶解反應;而隨著反應時間的增加玄武岩溶解量逐漸提高,水溶液中的陽離子濃度及 pH 值再度上升,使得整體反應自溶解狀態朝著礦化沉澱方向發展,在得到珍貴的水資源的同時還可將二氧化碳礦化,達到淨零的目標。

Design of a new Hydrogen Fueled Hybrid Car Prototype

The proposed project involves a new water-fueled hybrid car prototype that integrates various technologies, including photovoltaic (PV) panels, electrolysis, a fuel cell, a metal hydride tank, and a battery. The car is equipped with PV panels on its surface, such as the roof or hood, which convert solar energy into electricity. This electricity powers a DC motor that propels the vehicle. Excess electricity can be stored in a battery or used in an electrolysis system to split water into hydrogen and oxygen. The hydrogen is stored in a metal hydride tank for later use. Metal hydrides are materials capable of absorbing and releasing hydrogen gas, providing a safe and compact storage solution. The fuel cell converts hydrogen into electricity to power the DC motor when sunlight is not available. This hybrid system allows for direct solar-powered operation while also storing excess energy as hydrogen. Experimental tests were conducted on a prototype of this water-fueled car, with the fuel cell serving as a backup power source to ensure continuous operation even without solar energy. This concept offers several advantages, including the use of renewable solar energy, zero emissions during fuel cell operation, and the ability to store and utilize excess energy.

以甲醇與甲酸為營養源評估甲醇利用菌的碳利用效能

全球暖化造成氣候危機,對人類生存的威脅愈來愈大,達成巴黎協定的淨零碳排刻不容緩。本研究擬以甲醇利用菌(Methylorubrum populi )做為碳捕集封存與再利用(Carbon Capture Utilisation and Storage/CCUS)的生物工廠,將甲醇(CH3OH)及甲酸(HCOOH)等單碳化合物合成生物質。經全基因定序及序列分析得知,M. populi 具有可以利用甲醇、甲酸進行生合成的多條路徑。同時將菌液以不同比例的甲醇與甲酸為碳源,在不同酸鹼值中培養,測量其生長曲線,由此推得倍增時間等各項參數,並分析乾燥後的菌體各元素佔比。分析結果顯⽰,在 pH6.3、以甲醇甲酸比 9:1培養 M.populi,碳儲存率可達 46.0%且在指數期生長快速,可達到有效減少溫室逸散至大氣的目的。