全國中小學科展

盧森堡

A Modular Construction 3D Printer

The 3D printer that we created is able to print objects out of concrete and is modular, so it can be assembled the way it is needed.

Solving Mathematical and Chemical Equations using Python

Max Gold's project, titled “Solving Mathematical and Chemical Equations using Python”, is a website comprising of 4 main programmes: one to find the smallest possible combination of two chemical compounds or elements; a self-made parsing function to convert a chemical equation into a matrix, then using Gaussian-Jordan elimination to find coefficients for an equation; a programme to parse a mathematical expression and use that parsed expression in algebraic division of an algebraic dividend of nth degree polynomial by a divisor of 1st degree polynomial; finally, a programme to solve binomial equations for the power s∈Q. This website was originally made so that Max Gold could improve his programming skills for GCSE computer science but expanded to incorporate his passion for chemistry and maths and thus allow others to use these programmes to help them with their problems as well. A problem with many conventional calculator websites is their lack of specificity – they tend to be able to compute some functions but not all. These programmes are tailored to GCSE and A level maths and chemistry, meaning this website provides an outlet to compute specific topics of problems.

Solving Mathematical and Chemical Equations using Python

Max Gold's project, titled “Solving Mathematical and Chemical Equations using Python”, is a website comprising of 4 main programmes: one to find the smallest possible combination of two chemical compounds or elements; a self-made parsing function to convert a chemical equation into a matrix, then using Gaussian-Jordan elimination to find coefficients for an equation; a programme to parse a mathematical expression and use that parsed expression in algebraic division of an algebraic dividend of nth degree polynomial by a divisor of 1st degree polynomial; finally, a programme to solve binomial equations for the power s∈Q. This website was originally made so that Max Gold could improve his programming skills for GCSE computer science but expanded to incorporate his passion for chemistry and maths and thus allow others to use these programmes to help them with their problems as well. A problem with many conventional calculator websites is their lack of specificity – they tend to be able to compute some functions but not all. These programmes are tailored to GCSE and A level maths and chemistry, meaning this website provides an outlet to compute specific topics of problems.

The effects of Different Synthesis Methods and Catalysts on Crude Aspirin

Aspirin is one of the most used and well-known medicines world-wide. It can be synthesized by reacting acetic anhydride and salicylic acid in a warm temperature of around 60-80°C. This reaction is usually catalyzed by sulfuric or phosphoric acid. This paper will investigate alternative catalysts, safer and more environmentally friendly, as well as compare different synthesis methods with different heat mediums, one using a water bath and the other amicrowave. By doing so, the effects of the catalyst and the method of synthesis on the yield, purity and environmental consequence of crude aspirin synthesis will be deduced. The targeted utcome is to find the alternative method as more energy efficient, and to find a greener safer catalyst to sulfuric and phosphoric acid. Further background information, exploration, and explanation is in the appendix. The targeted outcome will be to find a viable alternative catalyst that is safer and more environmentally friendly, and to find that the microwave synthesis method consumes less energy.

Bacteria with Headphones

I first found out about the Young Scientist competition last year, in 2021. I thought it was an interesting and challenging opportunity; something that could take students out of their comfort zone. I researched for some inspiration online and found a website with all the different types of project ideas. While reading about the experiments, I stumbled upon a project relating the music to bacterial growth. It sounded ridiculous at first, but I soon realized it was the right project for me. It intertwined music and biology- form of art I’ve been involved in since the age of 9, and one of my favorite subjects and a field I want to work in in the future.

Can Quantum Mechanical Two-State Theory model Coulomb’s Force?

The quantum mechanical description of the four fundamental forces of nature is very important for the decryption of the rules which underlie our world. While Quantum Electrodynamics (QED) describes the electromagnetic force in great detail, it also uses complex mathematical techniques and advanced physical concepts. In the following, I will analyze to what extent a quantum mechanical two-state model can be used to describe the Coulomb interaction between two charged particles. To do so, I will exclusively focus on the electrostatic interaction, leaving dynamics aside. Furthermore, the analysis is nonrelativistic and does not consider the spin of the particles. Finally, using discrete state theory allows to explore the strength of the basic concepts of early quantum mechanics. In this sense, I will try to develop a simpli ed model for the quantum mechanical description of the electrostatic force. However, the analysis is not simplistic, since the traditional formalism of quantum mechanics will be used, including Dirac's Bra-ket notation, probability amplitudes, the Hamiltonian matrix as well as the Schrödinger equation. To understand the framework of my project, it may be helpful to take a look at the source of inspiration for my analysis: In Chapter 10 of the third volume of the well-known textbook series The Feynman Lectures on Physics[4], the force holding the hydrogen molecular ion together is explained in terms of a two-state system. The electron of the molecular ion can be either at the rst proton or at the second one. The exchange of the electron between both protons leads to an attractive force between them. It is known from QED that the electrostatic interaction between two charged particles is due to the exchange of a virtual photon which acts as force carrier. The idea of my work is to explore whether the electrostatic force can be described by a very similar model, replacing the electron acting as force carrier in the molecular ion by a virtual photon for the description of the electrostatic force between two charged particles. To describe a system consisting of charged particles, I will make the assumption that a charged particle can appear in two states. Either it is in state e where it can emit a photon or it is in state a which enables it to absorb a photon. Upon emission or absorption of a photon the charged particle transitions to the respective other state. This makes the approach analyzed in my work an element of discrete state theory, since two di erent states of the particle are used to store information about it. Of course such a model cannot be compared to the sophisticated theory of Quantum Electrodynamics. The point is, however, that it is interesting to explore the power of the most fundamental concepts of quantum mechanics and to show that such an analysis can lead to inspiring results.

Project M.I.R.A.S

1.1 Short project summary My project involves the conceptualization and development of an innovative approach to modular self-assembling robotic systems. Through its ability to form any complex configuration, the system is highly adaptable to various scenarios and environments. Before delving deeper into the details of my project, I will provide an overview of my background and motivations. 1.2 Background Ever since I first watched the movie "Big Hero 6", I felt amazed by the applications of the so called “microbots”. From that point on, it made me always wonder what would be possible in the real world. When I did the research, I stumbled upon this field of modular robotics. Initially, I was unsure whether to embark on a project focused on electronics and robotics due to my background in programming. On the other side, this year gave me a chance to see the incredible performances of various projects at different science expos. Besides, I took part in the program of CANSAT LU and learned a lot during it, such as microchips, the control of miniature robotics, and the sensors of it. Finally, at school, I took the option Electronics where we dig into similar topics. With this accumulated knowledge and experience I felt confident enough to start this project.