全國中小學科展

尼泊爾

Autonomous Vehicle

This is the self-driving and navigating vehicle which follows a track. This robot is made by our group. We made this robot together assembling the parts. This robot is commonly used in industries to shift goods and product. In this robot we have arranged all the things also metal detector which buzz when a metal is detected under it. This robot helps a lot in industrial life and is also easy to make if we learn the steps. This robot also needs programming to make it work. The programming software used for it is known as Arduino IDE. This is the figure of this robot in industries. Here the people are keeping goods in the pickup and shifting them. This robot can also run in white track, only if we do the programming right for the white track. Nowadays in cars too this type of system is used like example: Tesla model X. In the car this system is used and to avoid the obstacles something named Lidar is used. To make this vehicle follow its track and the motor to run different things are used like IR Sensor, and L298N motor driver module respectively.

Line Following Waiter Robot

Technology is erratic. We never know what could be the next big thing. Nowadays, IoT (the internet of things) has taken over the market. Every technology created nowadays is somehow related to IoT. You should manage to connect the IoT technology with a robust area of hospitality. Catering customers' needs during peak hours at any restaurant or cafe could get overwhelmed with hectic tasks such as taking orders, fetching water, and ordering meals. We created a raw model to accommodate the limitations of the human mind. The technology-based IoT (Internet of things) can come in handy during hectic sessions. A Robot waiter is built from scratch using materials like Arduino (2), Gear DC motor (2), L298N motor driver (1), Ultrasonic sensor (2), IR sensor (2), Servo motor (4) HC-05 Bluetooth module. Desired orders are sent on a wireless network through the menu bar to the kitchen. Then, the robots transfer the food from the kitchen to the customers. The floor will be all white, while there will be a strip of black line to connect every sitting and the kitchen. For instance, if table number three is to be served, we click the number three in the app, which renders an obstacle in table 3. The motor barricades the robot, and the ultrasonic sensors sense it, and it stops. If anyone picks the plate, the ultrasonic sensor senses it, the blockage is removed, and the robot paces in the designated path. People visited the place more often to experience such stimuli. Using the robots attracted more customers and made the work very quick.

Line Following Waiter Robot

Technology is erratic. We never know what could be the next big thing. Nowadays, IoT (the internet of things) has taken over the market. Every technology created nowadays is somehow related to IoT. You should manage to connect the IoT technology with a robust area of hospitality. Catering customers' needs during peak hours at any restaurant or cafe could get overwhelmed with hectic tasks such as taking orders, fetching water, and ordering meals. We created a raw model to accommodate the limitations of the human mind. The technology-based IoT (Internet of things) can come in handy during hectic sessions. A Robot waiter is built from scratch using materials like Arduino (2), Gear DC motor (2), L298N motor driver (1), Ultrasonic sensor (2), IR sensor (2), Servo motor (4) HC-05 Bluetooth module. Desired orders are sent on a wireless network through the menu bar to the kitchen. Then, the robots transfer the food from the kitchen to the customers. The floor will be all white, while there will be a strip of black line to connect every sitting and the kitchen. For instance, if table number three is to be served, we click the number three in the app, which renders an obstacle in table 3. The motor barricades the robot, and the ultrasonic sensors sense it, and it stops. If anyone picks the plate, the ultrasonic sensor senses it, the blockage is removed, and the robot paces in the designated path. People visited the place more often to experience such stimuli. Using the robots attracted more customers and made the work very quick.

IoT based automatic water temperature adjustor

This paper represents IOT Based Automatic Water Temperature Adjustor. IoT (Internet of Things) refers to the network of physical objects that are embedded with sensors, software, and other technologies for the purpose of connecting and exchanging data with other devices and systems over the internet. This system is for adjusting water temperature according to the possible surroundings such as home temperature, atmosphere temperature, etc. To solve problems like high water temperature while using, time-consuming waiting for water to heat and cool, high power consumption, and not satisfying water temperature this system offers the feature for automatically adjusting the temperature. Arduino, DHT11 (Temperature-Humidity Sensor), Bread Board, DS18B20 (Water Temperature Sensor), Jumper Wires, Resistor, I2C OLED, Water Heating Coil, Relay and LED are used for operating this system. The application of this system is very vast as it can be implemented in power plants, hospitals, mountain regions, local homes, and lodges. This system is time-saving, cost-efficient, easy to implement, provide automatic features, less power consumption, safety, and many more. Compared to other water geyser systems it has the feature of automatically detecting the environmental temperature and adjusting the temperature of the water accordingly. This system is still in its developing phase.

IoT based automatic water temperature adjustor

This paper represents IOT Based Automatic Water Temperature Adjustor. IoT (Internet of Things) refers to the network of physical objects that are embedded with sensors, software, and other technologies for the purpose of connecting and exchanging data with other devices and systems over the internet. This system is for adjusting water temperature according to the possible surroundings such as home temperature, atmosphere temperature, etc. To solve problems like high water temperature while using, time-consuming waiting for water to heat and cool, high power consumption, and not satisfying water temperature this system offers the feature for automatically adjusting the temperature. Arduino, DHT11 (Temperature-Humidity Sensor), Bread Board, DS18B20 (Water Temperature Sensor), Jumper Wires, Resistor, I2C OLED, Water Heating Coil, Relay and LED are used for operating this system. The application of this system is very vast as it can be implemented in power plants, hospitals, mountain regions, local homes, and lodges. This system is time-saving, cost-efficient, easy to implement, provide automatic features, less power consumption, safety, and many more. Compared to other water geyser systems it has the feature of automatically detecting the environmental temperature and adjusting the temperature of the water accordingly. This system is still in its developing phase.

THIRD-LIFE: Real Life Accident Alerting, Live Locations and Notifications to Emergency Service

The country of Nepal, although beautiful, is facing many challenges due to its geography, lying between the towering Himalayas and the vast plains of Terai. The narrow mountain roads, prone to landslides and poor infrastructure, often result in frequent accidents. This situation is worsened by the delayed emergency response, as accidents are often reported much later than the time they occur. In the past ten years, over 15 major bus accidents have killed hundreds of people, and in 2024 alone, more than 80 deaths were reported. In response, the "Third Life" project was developed to improve emergency response time and save lives.The project has two main components: first, a device equipped with GSM (Global System for Mobile Communications), a GPS module (Global Positioning System), a gyroscopic sensor, and a microcontroller to detect accidents in real-time within seconds of the incident. Second, once an accident is detected, live coordinates are sent directly to emergency services and police stations for immediate assistance.This project is not only vital for Nepal but also for countries with similar terrain and infrastructure challenges. The "Third Life" project aims to save many lives that are lost due to delayed reporting, ensuring quicker emergency responses.A tragic example of this was the 2024 Trishuli bus accident, where many lives were lost when the bus plunged into the river. To date, the bus has not been recovered. Our project aims to create a waterproof device that, when connected to a satellite, will send live coordinates to emergency services, ensuring 100% reliability. This device could help locate the bus, which is still missing, within seconds.Ultimately, this initiative offers more than just safety it restores peace of mind and hope for the families of victims, providing them with a chance for a better future despite the tragedy.