全國中小學科展

2023年

陶瓷燒成新技術- 以家用微波爐及自製集熱盒燒製高溫陶瓷之研究Research on firing high temperature ceramics with household microware oven and self-made heat collection box

本研究以家用微波爐及自製集熱盒燒製高溫陶瓷,用於家用微波爐的集熱盒材料的材質以玻璃纖維為主體為佳,集熱材料使用碳化矽顆粒級配重量比為1:3(320目碳化矽:180目碳化矽) 有最佳的微波吸熱效率並半浸泡的方式沾黏3.02mm (10層)最好;集熱盒玻璃纖維與集熱材料碳化矽之間的高溫黏著劑,以體積比3:7(矽酸鈉:水)為最佳配比。以家用微波爐搭配自製集熱盒可於26.5分鐘便可燒結陶瓷上釉作品,與傳統電窯需480分鐘比較可大幅減少94.48%的燒製時間,且其耗費的能源可省去89.44%的電費,以家用微波爐及自製集熱盒燒製之陶瓷品與傳統電窯燒製之陶瓷品在洛式硬度儀上測試結果無明顯差異,是未來極具發展性的陶瓷燒成技術。

台灣藍鵲的習性與領域行為之研究

近年來都會區常有臺灣藍鵲出沒,讓習於都市文明的現代人不知如何應對。本研究目的在了解臺灣藍鵲的習性、合作生殖行為、領域行為,進而探討引發臺灣藍鵲威嚇、攻擊行為的因素。從民國106年2月起至111年9月止,在住家庭院前和社區進行有系統的生態習性觀察 ,透過拍照、錄影,最後實驗出顏色、距離、聲音是否影響臺灣藍鵲領域行為。結果發現:繁殖期是從三月上旬開始,七月上旬結束。當發現牠們開始築巢時,不要靠近或干擾,因為臺灣藍鵲有領域行為,要距離臺灣藍鵲至少54.4公尺以上,遠離鳥巢7.1公尺範圍以外,也要避免穿紅色衣服或桃紅色衣服在鳥巢樹下走動,才不會引起臺灣藍鵲出現威嚇行為。不要讓聲音超過 97 ±2(mean S.D.)分貝以上,那是臺灣藍鵲無法忍受的噪音範圍。所以,與臺灣藍鵲就地保育與共存,讓人們認識、理解牠,是減少衝突的關鍵。

由阿拉伯芥自然族群之環境分佈差異探究新穎抗旱基因

目前分布在歐洲地中海沿岸的阿拉伯芥孑遺族群曾經廣泛分布於後冰期歐亞大陸,而後被非孑遺族群取代成為目前全世界分布的優勢族群。伊比利半島是阿拉伯芥孑遺與非孑遺族群的交會處,擁有高度遺傳多樣性。我們以該地的環境資料進行全基因體關聯分析,篩選出與降水量、乾旱有高度相關的AT1G58310與AT4G32040作為標的基因。我們觀察標的基因之SNP位點與孑遺族群的分佈情形;並以主成分分析及親緣關係樹,計算各地植株之基因序列差異及其分群關係。接著以標的基因突變株進行無逆境與PEG-6000模擬乾旱逆境之根長實驗,結果指出突變株根系都顯著較野生型長、廣,顯示AT4G32040具有抗乾旱功能。本研究由演化生態學的角度切入,結合遺傳基因體學進行分析,以分子生物學實驗驗證標的基因與植物抗旱能力之關聯。期望透過此研究模式推廣至其他農作物,以應對水資源短缺和糧食生產需求的增長。

彈跳光點之無限反射曲線存在性研究

在這篇作品中,研究了在遵守反射定律的情況下,“光點”在x軸和“反射曲線”之間反射時,無限往前彈跳的可能性。 研究分成兩個階段,第一階段沿用了我過去作品中的基本結果,闡述了“入射光線”角度之間的遞迴關係,並用“反射切線”角度寫出第n個入射光線角度的封閉式。 第二階段運用函數值趨近於非零常數(為了研究簡潔,假設趨近於1)的情況下一般可用的“接觸點”估計方式,並使用此結果證明了在特定初始條件下,1+e^(-x)和1+1/x都是“無限反射曲線”,但一開始的接觸點估計方式只適用於反射曲線函數值趨近於非零正數的情況,所以我也針對函數值趨近於零的情況進行了思考,但發現了估計推導上的困難,這將是我未來繼續研究的方向。

昆蟲翅膀3D仿生結構應用SERS檢測水污染分子

大家好,我是國立臺灣師範大學附屬高級中學的呂宸昕,目前是高二,在2022醫療科技展中認識了明志科大劉定宇教授,並進入材料工程系的實驗室開始做實驗,看到學長姊處理基材結構的時候,就也決定投入SERS的研究,而我是選用昆蟲翅膀的仿生結構去做實驗,也將初步結果投稿到了國際期刊Polymers並且被接受刊登出來,非常感謝老師和教授協助。

Automated Inflation and Pressure Regulation for Recreational and Professional Cyclists

Cycling is a very popular mode of transport as well as a famous sport around the world. Many people enjoy this sport either professionally or recreationally. Cycling in the UK alone has grown up to 200% since lockdown in 2020. (Chandler, 2020) Cyclists make use of a broad selection of products to enhance their performance. Those products range from wireless gear shifting, advanced geometry, smart suspension. This project is aimed to indicate the importance of tire pressure and to introduce a product which will be able to adjust tire pressure while cycling. This product will give cyclist an advantage on different terrains as well as eliminate some common problems amongst cyclists. Flat tires are one of these problems. It occurs commonly amongst cyclists and can happen due to a variety of reasons. Another problem is wrongly inflated tires. This causes unnecessary loss in a cyclist’s power and speeds due to the high rolling resistance between the tires and the surface. This then results in losing time whether racing or commuting. In an article published in 2014 in Velonews.com, Lennard Zinn states: “Whether on tarmac or singletrack, a tire with lower rolling resistance reduces the power required to move forward while also providing a better quality ride. The tire absorbs small bumps by not transferring them into the bicycle and rider, resulting in a smoother ride, faster speeds, and better cornering." (Zinn, 2014) Taking this in consideration it becomes clear that it is important to develop a system which is able to control tire pressure.

探討實際執行、動作心像、動作觀察與鏡像動作時之腦部活化情形

本研究以功能性近紅外光頻譜儀,探討雙側主要運動皮質(M1)、前運動皮質(PMC)及聯合動作皮質(SMA)等動作相關腦區,以實際執行(ME)、動作心像(MI)、動作觀察(MO)及鏡像動作(MVF)等模式執行上肢功能性前伸動作(Arm reaching)時,腦部之活化情形。研究結果發現「實際執行」、「動作心像」與「鏡像動作」執行時,動作相關腦區皆顯著活化,包含M1、SMA及PMC。且可觀察到執行「動作心像」、「鏡像動作」時之大腦活化模式與「實際執行」呈現相同趨勢。此結果可應用於臨床復健訓練中,對於上肢偏癱患者(如中風患者),建議使用「鏡像動作」模式訓練,而對於雙側皆有動作障礙之患者(如頸部脊髓損傷),可使用「動作心像」作為替代治療。

隱密的發育調節中樞-植物轉錄因子BPC對發育之調控機制 A cryptic hub for development control: Unraveling the regulatory role of plant transcription factor class I BASIC PENTACYSTEINEs in Arabidopsis development

GAGA 序列為生物發育重要順式作用子; BPC (BASIC PENTACYSTEINE) 則為植物特有 GAGA 結合蛋白。已知 bpc 突變體具多效性,其生理時鐘相關之發育有多重缺陷。阿拉伯芥BPC家族中 BPC1, BPC2, BPC3 為第一亞群,且 BPC 群間和群內有重疊與拮抗作用。為探究第一群 BPC 是否調控生理時鐘,本實驗以 3D 影像觀察 bpc1 bpc2、bpc1 bpc2 bpc3 及野生型之晝夜運動,並誘導 BPC 過量表現以檢測時鐘基因反應,發現 bpc 突變體之晝夜運動與時鐘節律皆有缺陷,顯示 BPC 能影響生理時鐘運行。透過一系列對第一群 BPC 突變體與過量表現植株的 RT-qPCR 檢測,可歸結第一群 BPC 是能調控生理時鐘與葉片生長的中心。

斜槓元宇宙-智慧新農機:全球首創利用Arduino自動偵測「迴轉耕耘機」犁耕土壤深度的火犁仔(曳引機)、解決人類糧食危機

本研究以機電整合,發明了【曳引機迴轉犁偵測系統】,將大型農業機械智能化,並優化及整合工程技術,設計了六大系統,藉由量化評工程效益及作物的產量變化,觀察設計成效。 根據文獻,水稻管理使用「灌溉系統」+「雜草抑制蓆」+「生物肥料」的機制,可以增加產量[1,2]。因此我們優化這些機制,並設計「精準深耕」、「智慧噴桿」、「滴灌系統」形成六大系統。利用自創的【曳引機迴轉犁偵測系統】,犁耕時就可以在每一寸土地上,精確控制土壤深度在25cm的「精準深耕」。我們也發現,在這六大系統的協同效應下,不僅省下3~12倍的作業時間,同時在加乘效果的作用下,產量可以大幅提高至79%。 本實驗花二年時間,在台中清水地區1.2公頃的農地,實際建構這六大系統。並使用無人機偵測飛行高度的3D立體影像感測器、Arduino微控制器、燒入自行設計的Arduino C程式,成功發明【曳引機迴轉犁偵測系統】,並裝在大型曳引機,用來偵測迴轉耕耘機翻鬆土壤的深度,同步將該數據立即顯示在駕駛室的儀表板。 目前全球六大品牌大型曳引機,造價超過新台幣400萬元,尚無一款具有本研究自創的迴轉犁自動偵測功能。

Using P.I.P. to strengthen roads: Plastic incinerated by plastic

People have become accustomed to single-use plastics. These are plastics that are used once only and are then thrown away or recycled. A piece of plastic can only be recycled 2-3 times before it is of bad quality and can no longer be of use. (Achyut K. Panda, 2019). Plastic waste fills up landfills and oceans, becoming hazardous and harmful to wildlife, while emitting greenhouse gasses. Alternatives, such as metal straws and paper bags have turned out inefficient and plastic is still a great need in society. Another way of getting rid of waste plastic is to burn it. Fossil fuels such as coal and natural gas are being utilised to burn plastic in industry. This causes many harmful emissions, such as carbon dioxide and carbon monoxide released from burning the plastic. It results in more damage being done than just leaving the plastic in a landfill. These emissions can be cleaned before being released into the atmosphere. Plastic is made of petroleum, so when it is burned it is converted back into a fuel. Plastic can be burned under controlled conditions to create a fuel source that can be used, thereby utilising the waste plastic. The research conducted aims to investigate the use of plastic waste to burn other plastic to create a renewable fuel source and to eliminate plastic waste.