Development of UV-Protection Roofing Tile from Nitrogen-doped Graphene Quantum Dots (N-GQDs) for Rubber Drying Chambers
                                        Improved methods of processing latex into rubber sheets will improve the incomes of small rubber producers. There are two ways in which latex can be processed into rubber sheets: fumigation and solar incubation. The fumigation method is expensive and produces pollution, but solar incubation can cause dark, sticky rubber sheets due to UV radiation, which reduces their value. A low-cost and environmentally-friendly solution to this problem was investigated here. A UV-protective roofing panel made using Nitrogen-doped Graphene Quantum Dots (NGQDs) was developed and tested. N-GQDs were made using the hydrothermal process for 2 and 4 hours (T2 and T4) and the solvothermal process for 4, 6, and 8 hours (TS4, TS6, and TS8). It was found that all types of N-GQDs absorbed light in the UV range, withT4 showing the greatest absorption. T4 had the greatest Fluorescent Intensity (FL) value, emitting blue light, while for the solvothermal method TS6 had the highest FL value, emitting red light. T4 and TS6 were chosen for further testing, and were applied to a clear roofing tile. After installing the roof on the chamber, the temperature inside was higher than outside. Then we measure the UV protection efficiency of the roof which was 93.27%. The average temperature was 45℃, which is the temperature for drying rubber sheets. Due to the roof’s capability to absorb UV radiation and heat the chamber, our N-GQDs roof has a great ability to produce higher-quality rubber sheets. 
                                    
                                
                                    
                                        Reduction of traffic congestion in España Boulevard using graph theory
                                        There have been numerous studies exploring the applications of graph theory in traffic management, often finding ways to reduce traffic congestion and make traveling more efficient. Such studies will be beneficial when applied to heavily congested areas such as España Boulevard, one of the busiest thoroughfares in Manila. This paper aimed tooptimize the road map of España Boulevard using graph theory. The current road map of España Boulevard was represented as a directed graphand subjected to the mutation method of edge removal, wherein an edge isremoved in each mutation based on a computed fitness function, F(G),which depicts better efficiency at lower values. Edges were removed until the graph got disconnected, which was tested using the Floyd-Warshall algorithm. The 28th mutation resulted in a minimum F(G) value of 144.4; this is a 50.18% decrease from the F(G) of the original graph, which is 290. After the 28th mutation, the removals resulted in an increase in the F(G). As a result, the final mutation resulted in an F(G) of 311.89, which characterized a less efficient graph. This study was able to apply graph theory concepts to optimize the España Boulevard road map using the mutation method, minimizing its F(G) by at most 50.18%. For future studies, the practicality of the alternate road map may be tested in simulations to examine its efficiency when other factors, such as traffic volume, are introduced.
                                    
                                
                                    
                                        Designing a LiDAR topographic navigation system: A novel approach to aid the visually impaired
                                        The WHO reports 2.2 billion people internationally have a form of visual impairment, with Perkins School of Blind adding that 4 to 8 percent (8.8 - 17.6 million people) solely rely on a white cane for navigation. In an interview by Stephen Yin for NPR, visually impaired interviewees claimed that a white cane was ineffective as it failed to detect moving obstacles (ex. bikes), aerial obstacles (ex. falling objects), and it became physically demanding after a prolonged period. This problem can be solved with a headset that integrates LiDAR technology and haptic feedback to provide a real-time assessment of their environment. Theoretically, the device will determine how far an object is from the user and place it into one of three conditionals based on distance (0- 290mm, 310-500mm, 510-1200mm). As the user gets closer to the object, the haptic will vibrate more frequently. The device has 11 LIDAR sensors, beetle processors, and ERM motors so that when the LiDAR detects an object, the device will send a haptic signal in that area. It not only identifies the existence of an object but it tells the user its relative position with a latency period of approximately 2 milliseconds. When testing the device, a simulated walking environment was made. Ten obstacles were included: five below the waist (72”, 28”, 35” and 8.5” tall sticks) and five above the waist (paper suspended 6”, 10”, 48” and 28” from the ceiling). The white cane detected 4.1 obstacles, whereas the device detected 7.3 on average. The LiDAR navigation system is 178% more effective at detecting objects comparatively. Visually impaired individuals no longer must rely on the white cane; rather, using this device, they can detect small, moving, and aerial objects at a much faster, and more accurate speed. 
                                    
                                
                                    
                                        Synthesis of Substituted Pyrrolidin-2-ones and Isoindolines from Donor-Acceptor Cyclopropanes and Anilines/Benzylamines
                                        The development of rapid and efficient synthetic approaches to the bioactive cyclic and polycyclic azaheterocycles is one of the most important challenges in organic synthesis. In this work effective and simple synthetic approaches to polysubstituted pyrrolidin-2-ones 2 and isoindolines 3 from donor-acceptor cyclopropanes 1, bearing the ester group as the one of acceptor substituents, and amines were developed. The γ- pyrrolidone based skeletons and isoindoline ring system is a constituent of many biologically active molecules, both natural and synthetic, and a key component of clinically relevant entities (Fig.1,2) [1,2]. The synthesis of pyrrolidin-2-ones 2 includes Lewis acid-catalyzed opening of the donor-acceptor cyclopropane with primary amines (anilines, benzylamines, etc.) to γ-amino esters, followed by in situ lactamization and dealkoxycarbonylation. The reaction has a broad scope of applicability; a variety of substituted anilines, benzylamines, and other primary amines as well as a wide diversity of donor-acceptor cyclopropanes bearing (hetero)aromatic or alkenyl donor groups and various acceptor substituents, can be involved in this transformation. In this process, donor-acceptor cyclopropanes react as 1,4-C,C-dielectrophiles, and amines as 1,1- dinucleophiles. The resulting di- and trisubstituted pyrrolidin-2-ones can be also used in subsequent chemistry to obtain various nitrogen-containing polycyclic compounds of interest to medicinal chemistry and pharmacology, such as benz[g]indolizidine derivatives. The synthesis of the substituted isoindolines 3 is based on the domino-reaction between donor-acceptor cyclopropanes, bearing in ortho-position of aromatic substituent a bromomethyl group, and different primary amines (e.g., anilines, benzylamines, cycloalkylamines) was developed. The reaction involves the generation of secondary amine followed by nucleophilic ring opening of cyclopropane with amino group. Moreover, this process provided a new practical method for the rapid synthesis of benzo[b]pyrrolizidinone 4 from readily available starting materials.
                                    
                                
                                    
                                        朽木生花-初探以中藥萃取液對木材染色之防蟲抑菌效果
                                        In our experiment, we used traditional Chinese medicine to dye on cheap wood, in addition to avoiding the impact of chemical paint on human body; After dyeing, the color and texture quality of the wood are improved, which makes cheap wood have higher price and improves the value of wood; At the same time, it can reduce the felling of slow growing precious wood, which has the functions of environmental protection, earth love and carbon saving. The test material was pretreated with hydrogen peroxide and surfactant, and the bleaching effect was obvious. After dyed with different Chinese medicinal, soak in strong acid and alkali solution for 15 minutes, which shows that strong acid and acid treatment is not allowed. On the other hand, after 15 minutes of immersion in detergent, the color difference value is less than 2, and the rubbing fastness is above grade 4. In the bacteriostasis experiment, no fungus grew in the first 3 days, and it did not grow in the 12th day. In the anti-termite experiment, the mortality rate on the fifth day was 65% for Lithospermum and 83.8% for Wolfberry, and the other groups had a good effect of total elimination. While plastic products have a great impact on the environment, wood that is dyed or modified with natural colored dye, its environmental value far exceeds the human visual perception.