Reducibility of Silver ions by the Charcoal: Regarding Mechanisms, Art, and Liquid Waste Management
We elucidated the cause of the phenomenon, in which silver deposits on a bamboo charcoal when the bamboo charcoal is soaked in an AgNO3 water solution. From the experimental results, we considered that the hydrogen which is generated while the bamboo wood is carbonized is chemisorbed as C-H bonds on the surface edge of charcoal (the end of the carbon), and that these hydrogen atoms become hydrogen ions,which then reduce the silver ions and deposit silver. In addition, we created a graph of the mass of deposited silver versus the mass of charcoal, and the graph showed that the mass of deposited silver was strongly correlated with the surface area calculated from the mass of the charcoal. Besides, we showed that charcoal can be used in applications for the treatment of inorganic liquid waste, depositing metals from inorganic liquid waste by bamboo charcoals. Also, the charcoal is used for interior decoration because of its deodorizing effect and beauty. In our study, we create a work of art used silverdeposited charcoal with a motif of Karesansui (Traditional Japanese rock garden).
Evaluation of a fiber optic distributed temperature measurement system for a geothermal energy
As part of the European project GEOTHERMICA - ERA NET and in order to assess the capacity of heat storage in Switzerland, the Centre d'Hydrogéologie et de Géothermie de l'Université de Neuchâtel (CHYN) is taking part in the HEATSTORE project, launched in 2018. The latter is expected to lead to commercial heat storage projects in the near future in Geneva and Bern, in fractured aquifers. The evaluation of the geological characteristics of these aquifers is essential to understand the thermal energy transport processes of fractured aquifers. For this, it is necessary to be able to measure the temperature distribution along boreholes. Thus, the study focuses on the evaluation of a distributed temperature system (DTS) and its optical fiber in order to determine its operation, limits and potential for use in geothermal energy. Laboratory and field tests have been carried out that the water temperature deviation measurements, with a scan time of 30 s, are reliable at less than 0.5°C at +/-5 m over 500 m of fiber. For absolute temperature values, however, a bath and a reference probe must be used to recalculate the absolute temperature to within 0.5°C. The acquired data are essential for a broader understanding of the locations of fractured and karstified aquifers at Concise, allowing the system to be used to better understand the potential for water storage at a depth of 45°C at 35 m.
Conscious Brain Mind-Controlled Cybonthitic Cyborg Bionic-Leg - V2
Lower limb amputations affect about 28.9 million people worldwide, influencing normal human functions, we are developing a conscious brain mind-controlled Cybonthitic cyborg bionic-leg to provide a professional solution for this problem, which is classified as restricted knee movement, short-term solution, limited pressure bearing, unspecific analog reading of EMG; Because the output voltage measured in nano-volts, resulting in unspecific knee movement. The functionality of these modern gadgets is still limited due to a lack of neuromuscular control (i.e. For movement creation, control relies on human efferent neural signals to peripheral muscles). Electromyographic (EMG) or myoelectric signals are neuromuscular control signals that can be recorded from muscles for our engineering goals. We worked on a sophisticated prosthetic knee design with a 100-degree angle of motion. We also used a specific type of coiled spring to absorb abrupt or unexpected motion force. In addition, we amplified the EMG output from (Nano-Voltage) to (Milli-Voltage) using customized instrumentation amplifiers (operational amplifiers). We used a full-wave rectifier to convert AC to DC, as a consequence of these procedures, sine-wave output voltage measures in millivolts, and the spring constant indicates the most force for every 1cm. Von mises Stress analysis shows bearing as 3000N is the maximum load for the design. Detecting the edge of a stairwell using the first derivative. The benefit of a system that controls the prosthetic limb is activated by the patient’s own EMG impulses, rather than sensors linked to the body.