Face Pose Estimation using ResNet50 in the Metaverse
Face pose estimation has many possible applications, ranging from driver attention measurement systems to applications in the metaverse, which this project will be focused on. Rather than using a more traditional landmark-to-pose method where the head pose is estimated via keypoints, our method trains a simple convolutional neural network, using the dataset 300W_LP, where the images are simply inputted into the network. The model is fitted with three fully connected layers that are linked to the each of the three Euler angles (yaw, pitch, and roll), alongside multiple loss functions, which improve the robustness of the network.
Evaluation of a fiber optic distributed temperature measurement system for a geothermal energy
As part of the European project GEOTHERMICA - ERA NET and in order to assess the capacity of heat storage in Switzerland, the Centre d'Hydrogéologie et de Géothermie de l'Université de Neuchâtel (CHYN) is taking part in the HEATSTORE project, launched in 2018. The latter is expected to lead to commercial heat storage projects in the near future in Geneva and Bern, in fractured aquifers. The evaluation of the geological characteristics of these aquifers is essential to understand the thermal energy transport processes of fractured aquifers. For this, it is necessary to be able to measure the temperature distribution along boreholes. Thus, the study focuses on the evaluation of a distributed temperature system (DTS) and its optical fiber in order to determine its operation, limits and potential for use in geothermal energy. Laboratory and field tests have been carried out that the water temperature deviation measurements, with a scan time of 30 s, are reliable at less than 0.5°C at +/-5 m over 500 m of fiber. For absolute temperature values, however, a bath and a reference probe must be used to recalculate the absolute temperature to within 0.5°C. The acquired data are essential for a broader understanding of the locations of fractured and karstified aquifers at Concise, allowing the system to be used to better understand the potential for water storage at a depth of 45°C at 35 m.
Development of UV-Protection Roofing Tile from Nitrogen-doped Graphene Quantum Dots (N-GQDs) for Rubber Drying Chambers
Improved methods of processing latex into rubber sheets will improve the incomes of small rubber producers. There are two ways in which latex can be processed into rubber sheets: fumigation and solar incubation. The fumigation method is expensive and produces pollution, but solar incubation can cause dark, sticky rubber sheets due to UV radiation, which reduces their value. A low-cost and environmentally-friendly solution to this problem was investigated here. A UV-protective roofing panel made using Nitrogen-doped Graphene Quantum Dots (NGQDs) was developed and tested. N-GQDs were made using the hydrothermal process for 2 and 4 hours (T2 and T4) and the solvothermal process for 4, 6, and 8 hours (TS4, TS6, and TS8). It was found that all types of N-GQDs absorbed light in the UV range, withT4 showing the greatest absorption. T4 had the greatest Fluorescent Intensity (FL) value, emitting blue light, while for the solvothermal method TS6 had the highest FL value, emitting red light. T4 and TS6 were chosen for further testing, and were applied to a clear roofing tile. After installing the roof on the chamber, the temperature inside was higher than outside. Then we measure the UV protection efficiency of the roof which was 93.27%. The average temperature was 45℃, which is the temperature for drying rubber sheets. Due to the roof’s capability to absorb UV radiation and heat the chamber, our N-GQDs roof has a great ability to produce higher-quality rubber sheets.
Discussion for Titanium Peroxides and Their Application for Dealing with Zombie Shrimp Issue
Food safety was an important issue recently. Today sodium percarbonate was used to fake the vitality of shrimps to earn a good sell. However, it may cause harm to health because of the peroxides left over. To handle this problem, we set up two goals to achieve: detecting them and then removing them. In the past, the titration skill was an easy method for determining the concentration of H2O2. It not only spent too much time but also resulted in errors commonly. In this research, titanium sulfate and citric acid were used to prepare the colorimetric reagent. To measure the peroxides in water, several factors were controlled and the SOP for detecting and the calibration line for peroxides finally established. In practical, we turned the colorimetric reagent into the fast test paper which was easily for use. The other part of this research was to clear up the peroxides in water. We use titanium sulfate, hydrogen peroxide and citric acid as starting material via hot-bath method to prepare the nano-photocatalyst of titanium dioxide. Since the powder was inconvenient to deal with large amount of water. The powder-like TiO2 was further made into ball-shaped TiO2 in favor of water treatment and reuse. It was found that the photocatalytic performance of ball-shaped TiO2 was effective to be on duty for removal of the peroxides. In summary, this research provided two techniques to deal with the zombie shrimp. The novel method for synthesis of TiO2 catalyst and the preparation of colorimetric reagent for fast test paper were all in low cost. They had great potential to develop in marketing demand.
Reducibility of Silver ions by the Charcoal: Regarding Mechanisms, Art, and Liquid Waste Management
We elucidated the cause of the phenomenon, in which silver deposits on a bamboo charcoal when the bamboo charcoal is soaked in an AgNO3 water solution. From the experimental results, we considered that the hydrogen which is generated while the bamboo wood is carbonized is chemisorbed as C-H bonds on the surface edge of charcoal (the end of the carbon), and that these hydrogen atoms become hydrogen ions,which then reduce the silver ions and deposit silver. In addition, we created a graph of the mass of deposited silver versus the mass of charcoal, and the graph showed that the mass of deposited silver was strongly correlated with the surface area calculated from the mass of the charcoal. Besides, we showed that charcoal can be used in applications for the treatment of inorganic liquid waste, depositing metals from inorganic liquid waste by bamboo charcoals. Also, the charcoal is used for interior decoration because of its deodorizing effect and beauty. In our study, we create a work of art used silverdeposited charcoal with a motif of Karesansui (Traditional Japanese rock garden).