DEVELOPMENT AND USE OF LASER 3D SCANNER OF PREMISES
This research work is devoted to the stages of development and creation of a prototype of a laser 3D scanner model, programming of a controlling microcontroller, construction of 3D models of a scanned object. In the course of the work, the market of 3D scanners, which are used to build three-dimensional models of premises, was analyzed, the equipment necessary for the development and creation of the prototype was analyzed, as well as the software necessary for the operation of the prototype. The result of the work was the creation of a laser 3D scanner based on an Arduino microcontroller using a Lidar type sensor that scans and builds 3D models of objects. This working model of the 3D scanner demonstrates good capabilities and turned out to be easy to use.
Face Pose Estimation using ResNet50 in the Metaverse
Face pose estimation has many possible applications, ranging from driver attention measurement systems to applications in the metaverse, which this project will be focused on. Rather than using a more traditional landmark-to-pose method where the head pose is estimated via keypoints, our method trains a simple convolutional neural network, using the dataset 300W_LP, where the images are simply inputted into the network. The model is fitted with three fully connected layers that are linked to the each of the three Euler angles (yaw, pitch, and roll), alongside multiple loss functions, which improve the robustness of the network.
The effects of Different Synthesis Methods and Catalysts on Crude Aspirin
Aspirin is one of the most used and well-known medicines world-wide. It can be synthesized by reacting acetic anhydride and salicylic acid in a warm temperature of around 60-80°C. This reaction is usually catalyzed by sulfuric or phosphoric acid. This paper will investigate alternative catalysts, safer and more environmentally friendly, as well as compare different synthesis methods with different heat mediums, one using a water bath and the other amicrowave. By doing so, the effects of the catalyst and the method of synthesis on the yield, purity and environmental consequence of crude aspirin synthesis will be deduced. The targeted utcome is to find the alternative method as more energy efficient, and to find a greener safer catalyst to sulfuric and phosphoric acid. Further background information, exploration, and explanation is in the appendix. The targeted outcome will be to find a viable alternative catalyst that is safer and more environmentally friendly, and to find that the microwave synthesis method consumes less energy.