全國中小學科展

2023年

全無機 CsPbBr3鈣鈦礦量⼦點與其⼆價陽離⼦摻雜之光學特性、穩定性與噴墨列印應⽤之研究

本研究提出一款新型硫化氫偵測之螢光探針,我們選用BTIC作為探針螢光主結構並藉由修飾上疊氮達成偵測硫化氫之目的。帶入設計上,利用PPH3形成與粒線體的電位差使其將探針帶進粒線體,最終進行粒線體內硫化氫之偵測與顯影。 目前本實驗已合成出螢光探針基本結構與側鍊結構,並初步檢測探針對於硫化氫的偵測能力,確認其能夠與之反應並有顯著螢光變化。另外,目前已成功接上側鍊,待純化出目標產物後將進行進一步的性質檢測,包括選擇性、靈敏性、及持久性。 最後,我們預計將探針實際進行生物顯影,做多個結構顯影的比對,確認本研究之成效。此外,我們希望此款螢光探針除硫化氫偵測外,還能夠進行生物機制探討或疾病細胞篩選的應用。

引菁拒鹽 – 探討田菁較綠豆耐鹽的機制

隨著越來越劇烈的天災,對農作物損害造成了許多危機。去了解植物如何對抗逆境,是刻不容緩的。田菁是台灣重要的綠肥作物,我們也常在濱海鄉村的農田看到其存在;綠豆是常用作物,在研究上與日常生活中都很常見,同樣身為豆科植物,兩者對於常見的鹽逆境的反應是否有差異呢?本研究透過比較田菁與綠豆兩種常見豆科植物,深入了解並比較其耐鹽機制。首先,在外表型上,田菁幼苗在鹽逆境下的發芽率、芽長、根長和鮮重皆有較好的生長情形。其次,鹽逆境下田菁的氣孔密度較低,進而可以減少水分蒸散。第三,在生化測試中,田菁在POD和CAT兩個酵素上,表現出更高的酵素活性。這些抗氧化酵素可以幫助植物在逆境下更容易生存。總之,田菁由於更高的抗氧化能力而具有更好的耐鹽性,並且將更多的能量用於生長更複雜的根結構。此外,我們發現田菁在根中出現中柱分離和更多的脯氨酸累積,以幫助它保持水分和遠離鹽害。上述所有機制使田菁在鹽逆境下具有更好的適應與生長。我們希望這項研究可以在未來應用於農業上,減少不可預測的環境災害造成的經濟損失。

An Efficient and Accurate Super-Resolution Approach to Low-Field MRI via U-Net Architecture With Logarithmic Loss and L2 Regularization

Low-field (LF) MRI scanners have the power to revolutionize medical imaging by provid- 27 ing a portable and cheaper alternative to high-field MRI scanners. However, such scanners are usu- 28 ally significantly noisier and lower quality than their high-field counterparts. This prevents them 29 from appealing to global markets. The aim of this paper is to improve the SNR and overall image quality of low-field MRI scans (called super-resolution) to improve diagnostic capability and, as a result, make it more accessible. To address this issue, we propose a Nested U-Net neural network architecture super-resolution algorithm that outperforms previously suggested super-resolution deep learning methods with an average PSNR of 78.83 ± 0.01 and SSIM of 0.9551 ± 0.01. Our ANOVA paired t-test and Post-Hoc Tukey test demonstrate significance with a p-value < 0.0001 and no other network demonstrating significance higher than 0.1. We tested our network on artificial noisy downsampled synthetic data from 1500 T1 weighted MRI images through the dataset called the T1- mix. Four board-certified radiologists scored 25 images (100 image ratings total) on the Likert scale (1-5) assessing overall image quality, anatomical structure, and diagnostic confidence across our architecture and other published works (SR DenseNet, Generator Block, SRCNN, etc.). Our algo- rithm outperformed all other works with the highest MOS, 4.4 ± 0.3. We also introduce a new type of loss function called natural log mean squared error (NLMSE), outperforming MSE, MAE, and MSLE on this specific SR task. Additionally, we ran inference on actual Hyperfine scan images with successful qualitative results using a Generator RRDB block. In conclusion, we present a more ac- curate deep learning method for single image super-resolution applied to low-field MRI via a 45 Nested U-Net architecture.

Analysis on a New Electric Field Measurement Method Using Ionic Propulsion Propeller

Given the high sensitivity of electronic instruments, electromagnetic field intensity measuring is now becoming an essential part of the industry. Current electric field intensity meters are unfit for individual use and focus mainly on electromagnetic radiation rather than the field itself. In ionic propulsion, the propulsion force is proportional to electric field intensity but the use of this property on measurement remains largely unexplored. Here, our team investigates ionic propulsion in electric fields generated by electro-static methods and then systematically varies the point of measurement inside the field, thereby altering the intensity of the field without focusing on electromagnetic radiation. By combining the Van de graaff generator with an adjustable ionic thrust propeller, we find that the propeller speed which is proportional to the electric field is directly determined by the electric field intensity. Furthermore, we applied stroboscopy to the system to measure RPM, and have achieved the direct interaction between field intensity and RPM, which could be a new meter for field intensity measurement.

Study of regenerative and ontogenetic processes under the influence of EHF EMR.

The increased sensitivity of aquatic organisms to the effects of EMF has been proven by numerous experimental studies. It has been repeatedly noted that exposure to EMF of certain frequencies and intensities leads to disruption of physiological functions, orientation in time and space, changes in the behavior of organisms, suppression of motor activity. Other ranges of electromagnetic radiation, on the contrary, can cause the effects of increased regeneration, growth rate and survival. In connection with these trends, the purpose of our research is to analyze the effects of the influence of electromagnetic radiation of extremely high frequency on the development of the Xenopus laevis and the regeneration of newts and planarians

In silico identification and physicochemical analysis of potential novel antimicrobial peptides from Momordica charantia L.

The emergence of antibacterial resistance has necessitated the development of alternative treatments, such as antimicrobial peptides (AMPs). AMPs are part of the innate immune systems of various organisms such as Momordica charantia L., a known medicinal plant in Southeast Asia. In this study, potential novel AMPs from M. charantia were derived in silico to provide prospective antibiotic alternatives using promising plant-based peptides. M. charantia protein sequences that were 500 amino acids long were digested using proteolytic enzymes, resulting in 3,621 peptides. Each resulting sequence was characterized as either AMP or Non-AMP using four statistical analysis tools, and those identified as AMPs were analyzed. This led to 102 AMPs, 53 of which were unregistered on the Data Repository for Antimicrobial Peptides, indicating that they have yet to be derived from other species. Six of the eight studied physicochemical properties show strong correlations with each other, suggesting that subsequent AMP design studies may focus on these six properties. As such, M. charantia may be a rich source of potential AMPs and, thereby, alternative antibiotics. The in vitro examination of these novel AMPs is also recommended to further understand their potential as alternative antibiotics sourced from locally available plants.

Conscious Brain Mind-Controlled Cybonthitic Cyborg Bionic-Leg - V2

Lower limb amputations affect about 28.9 million people worldwide, influencing normal human functions, we are developing a conscious brain mind-controlled Cybonthitic cyborg bionic-leg to provide a professional solution for this problem, which is classified as restricted knee movement, short-term solution, limited pressure bearing, unspecific analog reading of EMG; Because the output voltage measured in nano-volts, resulting in unspecific knee movement. The functionality of these modern gadgets is still limited due to a lack of neuromuscular control (i.e. For movement creation, control relies on human efferent neural signals to peripheral muscles). Electromyographic (EMG) or myoelectric signals are neuromuscular control signals that can be recorded from muscles for our engineering goals. We worked on a sophisticated prosthetic knee design with a 100-degree angle of motion. We also used a specific type of coiled spring to absorb abrupt or unexpected motion force. In addition, we amplified the EMG output from (Nano-Voltage) to (Milli-Voltage) using customized instrumentation amplifiers (operational amplifiers). We used a full-wave rectifier to convert AC to DC, as a consequence of these procedures, sine-wave output voltage measures in millivolts, and the spring constant indicates the most force for every 1cm. Von mises Stress analysis shows bearing as 3000N is the maximum load for the design. Detecting the edge of a stairwell using the first derivative. The benefit of a system that controls the prosthetic limb is activated by the patient’s own EMG impulses, rather than sensors linked to the body.

以粒線體轉移治療動脈血管內皮細胞功能失調及動脈粥狀硬化疾病

動脈粥狀硬化疾病的風險因子及血管擾流會造成血管內皮細胞內的粒線體失去功能,導致內皮細胞功能失調,進而引起動脈粥狀硬化疾病的後續病程,如斑塊形成。本研究主要探討粒線體轉移療法,是否能改善受到擾流影響的血管內皮細胞功能失調。首先,我們分別觀察並比較擾流與順流下的人類動脈血管內皮細胞,兩者細胞形態與內皮相關功能基因表現量的差異。其次,我們從順流處理的細胞中分離取得健康的粒線體,轉移入擾流處理的細胞中。接著以生物能量代謝分析儀,檢測轉移粒線體後內皮細胞呼吸鏈與代謝的功能是否隨粒線體的轉移而有所改善。實驗結果確認,粒線體轉移處理可改善擾流組細胞的呼吸鏈功能,細胞的有氧呼吸與產能代謝皆有改善。本先驅性研究希望有助於開創以粒線體轉移技術作為心血管疾病治療的創新療法。

探討RePRP基因對水稻抗生物逆境的表現

前人研究發現在乾旱與高鹽的非生物逆境下,水稻體內的離層酸濃度上升,進而活化RePRP基因的表現,以減少水分散失渡過環境逆境。而同樣會活化RePRP基因表現的茉莉酸,是植物在對抗生物逆境時重要的激素。因此實驗中以萵苣及稻熱病菌為植物排他與植物防禦的刺激者,測試水稻的RePRP基因表現實驗,結果發現RePRP基因大量表現株會抑制萵苣的胚根及幼苗生長,推測與他種植物共同栽培時,會誘導RePRP基因表現,使水稻進行排他作用。另一方面發現當水稻被稻熱病菌感染後,RePRP基因抑制株的幼根與幼苗長度較短,而以不同濃度的MeJA處理後,RePRP基因過表現株其根部幾丁質酶的分解能力較佳,且當MeJA的濃度越高,幾丁質酶的濃度也隨之增加。因此推測真菌感染後,會誘導RePRP基因表現,造成幾丁質酶濃度增加,協助水稻抵抗真菌感染。

探究Nocardiopsis菌落環狀紋路與相鄰同宗菌落間隙的成因

我們研究自黑液污染土壤篩選出的Nocardiopsis(擬諾卡氏菌)菌落環狀紋路的成因,發現環狀紋路形成具有遺傳性且可能是基因變異產生。在低營養濃度(Tryptone濃度小於1g/L)條件下,菌落紋路明顯,推測是由於基層菌絲無法取得足夠養分供給氣生菌絲,氣生菌絲無法生長,直到基層菌絲往外拓展至有足夠的營養物質的區域,氣生菌絲才再次開始生長,因而產生一環一環的不連續生長帶。 此外我們發現多個Nocardiopsis菌落之間,會因抑制物質作用產生間隙,此間隙大小受營養物質濃度、菌落間初始距離、周圍菌落數目的影響,且其機制與形成環狀紋路的機制並不相同,可能與菌落間偵測感應等複雜機制有關。我們萃取此抑菌物質送液相層析串聯質譜儀(LC-MS/MS) 鑑定其成分,發現抑制物質可能是Streptogrisin C或其他非蛋白質物質。深入研究Streptogrisin C的濃度與抑制Nocardiopsis生長的關係,以及其他抑制物質的可能性是我們未來的研究方向。