全國中小學科展

2004年

雨水衝擊和土壤滲透速率關係之探討

This research is devoted to researching the influence of rain-drop impact on the rate of infiltration. Rain-drop simulators 160cm tall drip water into a transparent container (14 x 10 x 4) of three kinds of soil (quartz sandstone, loess, sand soil) Through the manipulation of factors such as rain impact (raindrop diameter, raindrop descendent height, frequency of impact) and soil property, we experiment the different possibilities of infiltration and its rate under various conditions. Through this comparison we aim to discover the relation between rain impact and infiltration rate. This research concludes the following: 1. The larger the diameter of the raindrop, the quicker the infiltration rate. 2. The greater the descendent height, the greater the speed of infiltration due to collected descending speed. 3. In the early stage of rain, the greater the frequency of rain impact, the faster the rate of infiltration. 4. Under controlled raining conditions, the larger blank sand soil allows greater infiltration speed. 5. In the later stage of rain impact, a blanket of water accumulates on the surface of the soil, reducing the impact force and thus affecting the rate of infiltration. 本研究試探究雨滴撞擊對土壤入滲速度所造成的影響,針對此問題設計下列方法,以進行探討。我們採用高160cm 的自製雨滴模擬器來滴濺長14cm,寬10cm、高4cm 的透明實驗盒裝入三種土樣(石英砂、黃土與黑砂壤),接著改變各種雨水衝擊因子(不同直徑的水滴、不同的落下高度、不同的撞擊頻率)和土壤條件(土壤性質…)等變因,讓滴濺過程產生不同的情形,滴濺過後再行滲透作用,比較各情況所造成的滲透速率快慢的差異,尋找出雨滴衝擊和土壤滲透速率的關係。本研究有以下幾點結論:1. 雨滴粒徑愈大,對於土壤的入滲速率愈快。2. 雨水落下高度愈大時,因水滴動能的增加,土壤的入滲速率也愈快。3. 在水滴撞擊的初期,當水滴滴落頻率愈大時,土壤的入滲速率也會愈快。4. 當雨滴條件相同時,平均粒度較大的黑砂壤其入滲速率較快。5. 在雨滴撞擊後期,因表層土壤產生的水膜造成雨滴撞擊能量的變化。當水膜厚度愈大時,撞擊產生的能量有減少的趨勢而影響了土壤的入滲速率。

熱處理對水果抗氧化的影響

本實驗是針對聖女蕃茄、櫻桃、火龍果、加州李子、奇異果與恐龍蛋等六種水果以水煮、油浴、微波、微波加油等四種方式來處理,求出水果的抗氧化活性與處理時間的關係,並且利用Arnao研究的ABTS/H2O2/HRP分析系統,以不同濃度的維生素C與延遲時間畫圖作為標準曲線來測量本實驗總抗氧化力效果。\r 由本實驗結果可以了解不論熱處理方式為何,其對六種水果之抗氧化活性初期有增加趨勢,其中以加州李子,火龍果與奇異果尤其明顯,但隨著時間增長則抗氧化活降低。為得到較佳抗氧化效果,火龍果與櫻桃宜用微波處理而奇異果與聖女蕃茄則用油浴較佳,恐龍蛋用水煮方式較適宜,加州李子則適用任何熱處理方式。 \r This research has examined the antioxidant activities of six knids of fruits under\r four diffetent ways of cooking.The fruits being tested include tomato,cherry,Hyloceeus\r polyrhizus,plum,kiwi and peach and the ways of cooking include boiled in water,fried\r in oil,microwaved and microwaved in oil.The antioxidant activites of the cooked\r fruits were evaluated by the ABTS/H2O2/HRP method developed by Arnao and they were\r compared to the antioxidant activities of vitamin C.\r \r The result showed that the antioxidant activities of six kinds of fruits under four\r different ways of cooking were initially increased with heating but they were slowly\r decreased with longer time of heating.Among those fruits tested,the antioxidant\r activities were significantly increased in plum,Hyloceeus polyrhizus,and Kiwi.To\r improve antixoidant activities of fruits by cooking,Hyloceeus polyrhizus and cherry\r is better be microwaved,kiwi and tomato is better be fried,and peach is better be\r boiled. \r

DIY線上製作個人化字型--中文字結構分析與重組

中國文字,這個博大精深的文化,無論是書法中的篆隸楷行草,抑或是現代印刷變化多端的字體,都有其可觀之處。尤為在電腦字體的應用中,近年的發展以來,的確為生活帶來許多色彩;方便的閱讀,生動的海報,甚至是資料的建立,都拜中文字型之賜。為了讓廣大的使用者有更多更個性化的字型選擇,本研究尋找每個中文字在手寫上的特徵,記錄並歸類成「組字元素」,進而建立「學習樣本」以供使用者透過線上的手寫界面輸入,系統再予以分析並模擬組合成更多的字。研究目的在於要如何讓使用者僅提供少數的筆跡資訊,就可輕易的做出一套擁有個人筆跡的字型檔。

音材施教--簡易音高辨識程式

我們製作了一個音準練習程式:使用者輸入聲音後,經由音頻辨識方法求出其頻譜中最高振幅之頻率,以之為音高,再將其與目標音高相較,得到其誤差率及走音程度。此外還可發出對應的鋼琴及正弦波的聲音,方便使用者校音。文中說明音頻辨識的方法,一些關於音樂的基本知識,微軟公司的wave 檔格式,及此系統之應用。我們使用FFT 辨識頻率,且將針對此部分演算法做簡單的說明,並探討如何達到所需之頻率準確度,及如何以較高效率辨識。目前誤差率已可達到1Hz 以下,判斷時間也在秒之內。儘管國內外也有一些具備相似功能之音樂編曲軟體,但其功能十分繁複,使用者常需花費數週時間學習,且價格常高至數千元,非一般使用者所能負荷。而這個程式不但使用方便,功能簡單,容易上手,且不需任何費用。We have developed a singing-practicing program: after input the sound, we judge its pitch from the corresponding spectrum; then we compare it with the selected one, and output the deviation, so that the users can see if they had been out of tune. Also, we provide the sound of the piano and the sine wave sound of the chosen pitch, which can help users get the right pitch. This report will briefly introduce the method of pitch recognition, some basics of music, and Microsoft's wave file format. In addition, we explain the application of this program. We use FFT to transform a sound wave into the spectrum, which are briefly explained in the article, too. Also we’ll discuss how to improve the accuracy and efficiency of the transformation. So far the deviation is less than one Hertz, and the recognition takes less than one second. Though there have been some commercial software with similar functions, they are often complicated to use, and cost a lot. This is not affordable to most users. On the contrary, our program is not only convenient and easy to use, but also has a simple user interface. What’s more, it costs no money!

探討如何自製便宜的耐強酸鹼實驗桌面.

This study evaluates the corrosive resistance of strong acid and base for laboratory desks including epoxy resin products, plywood, carbonate products and boards. From results,only the surface of expensive resin products can tolerate the exposure of strong acid and base. The surface of other commercial materials was destroyed with strong acid and base. The performance of laboratory-made desk surface for resistance corrosion of strong acid and base was studied. Coating with Teflon paint on the board could resistant the exposure of strong acid and base, but a drying long time was the major shortage. Some of the chitin added could improve and tolerate the scraping with knife. The results will offer to make a cheaper laboratory desk. 本研究主要是探討不同材質的實驗桌面,如環氧樹脂合成板、三合板、美耐板、一般木板等,其對強酸、鹼的抗腐蝕之極限濃度,進而研發自製經濟實用的耐強酸鹼實驗桌面。由實驗結果顯示,只有較高級昂貴的環氧樹脂合成桌面,才能夠耐高濃度的強酸、強鹼,普通的環氧樹脂桌面、三合板或美耐板其抗強酸、鹼性則不理想。若將一般木板塗以鐵氟龍漆,即可得抗強酸強鹼之桌面材質,但漆不容易乾燥,若添加適量的幾丁質於鐵氟龍漆中,則漆將極容易乾燥,可降低烘烤溫度,使木板不致因高溫烘烤而變形,此所得結果可作為製作價廉的抗強酸強鹼實驗桌面之參考。尤其本實驗所製作之板面以水果刀刮之,板面絲毫未受損,故值得我們廣為運用。

是誰偷了水的熱?-傳導、對流、輻射

在研究水的降溫過程中,經由探討得知散熱速率與溫度有關,而根據理化課本第五章的觀念,熱量的傳遞共分為傳導、對流及輻射三種方式,因此我們根據原理歸納出,散熱速率和溫度的關係式為R(T) = K1T+K2T4-K0(詳見P.11)。接下來,我們從散熱速率對溫度的關係曲線,找出K1、K2及K0,以探討環境條件不同時,熱量傳遞方式所產生的變化。 從實驗結果我們發現,水量越少降溫速率越快,但實際上,水量少傳導和輻射的散熱面積也較小,傳導和輻射散熱的速率隨之降低,因此散熱速率反而較低。此外,我們根據降溫速率、散熱速率和溫度的關係圖及K1、K2 的變化,探討容器厚度、空氣流速、溶液與燒杯外壁顏色不同時,散熱速率的變化,並分析在不同的條件狀態下,熱量傳遞方式的改變。最後,藉由乙醇比熱之測量,進一步驗證所推導的公式。 In the research of cooling down in temperature of water, we realized that the speed of radiation relates to temperature. According to the concept in chapter 5 of Physics, the conveyance of thermal can be divided into three ways which are Conduction, Convection, and Radiation. Therefore, we can conclude the relationship between radiation speed and temperature as R(T) = K1T+K2T4-K0 (see chapter 11). We can find K1, K2 and K0 from the relation curve of radiation speed and temperature to probe into the changes of different thermal conveyances under different environmental condition.

終結保麗龍污染!---利用保麗龍廢棄物處理重金屬廢水之研究

保麗龍(EPS)由於無法分解一直是環境保護的嚴重困擾。本研究是將保麗龍改質為陽離 子交換樹脂(我們稱為”保麗龍膠(EPSR)”),藉以吸附重金屬廢水中的銅離子。研究內容包括: 保麗龍膠之特性、吸附銅離子之最佳條件、保麗龍膠之再利用及最終產物之固化,企圖提供 一個解決保麗龍汙染之整套方案。 我們採用五種日常生活中常見的保麗龍廢棄物進行測試。首先將它們依下列程序處理: 丙酮溶解→硬化→打碎→與濃硫酸共煮三小時→浸於50%硫酸溶液中→沖洗→以水浸泡,將 廢棄保麗龍磺酸化為保麗龍膠。在這五種保麗龍膠之中,5 號膠(由一般家電之保麗龍襯墊所 製成)具有最佳之磺酸化比例(莫耳分率)、吸附量及吸附速率。經檢測保麗龍膠的特性之後, 發現保麗龍膠為多孔物質,具有-SO3H 的官能基,吸附的模式是先進行化學吸附,高濃度 時兼具物理吸附。 保麗龍膠對銅離子的吸附研究是以一個自動化之差動電壓檢測器進行監測,同時用電腦 精確的擷取數據。保麗龍膠達到吸附銅離子的最佳條件依次為:使用細粒的5 號保麗龍膠、 銅離子溶液的濃度為50 ppm、操作溫度為10 ℃、廢水的流速為每分鐘為 5 c.c.、以及pH 值約為4.30。多次吸附確可將金屬離子幾乎完全去除。在一次初步測試中,我們成功地將三 個自製的微型保麗龍膠儲存槽串聯,進行管柱式的多次吸附,使得高吸附率時間可以維持3.5 小時以上。 保麗龍膠達到飽和吸收後,我們再將保麗龍廢膠與由硫酸廢液和碳酸鈣製得的硫酸鈣混 合,製成黏土,可以製作造型磁鐵、分子模型等物品,達成最終產物之廢物利用,完成廢棄 保麗龍再利用之完整方案。EPS waste is a severe problem for environment due to its non-dissolvability. This research proposed a method to transfer the EPS waste to cation exchange resin, designate as EPS rubber (EPSR), which could absorb Cu-ion in wastewater. The study included the character of the EPSR, the optimal conditions for Cu-ion absorption, the reusability of the EPSR and the solidification of the final production, trying to terminate the pollution of EPS waste. Five different EPS wastes were tested. They were processed as following: solved with acetone => hardening => smashing => boiling with sulfuric acid for three hours => soaking in 50% sulfuric acid solution => rinsing => soaking with water. Then the EPS were sulfonic acidified as EPSR. Among these five EPSR, EPSR-e, which was obtained from the EPS usually used for the pad of electric appliances, exhibited the best sulfonated ratio (in mole), adsorption quantity and adsorption rate. EPSR has a porous structure with a -SO3H functional group. The mechanism of adsorption is the chemical adsorption with a physical adsorption at high concentration. The Cu-ion saturating adsorption was investigated with a automatical differential-voltage detector, enabling the data to be precisely acquired by a computer. The optimal conditions for Cu-ion adsorption were employing fine EPSR-e particles, a Cu-ionic solution of 50 ppm in concentration, a flow rate of 5 c.c. per minute and a pH of about 4.30 at 10 ℃. Multiple adsorptions could remove Cu-ions almost completely. In a preliminary test, three EPSR-e absorption cells were seriated as a column, achieving a high-absorption condition to be maintained for more than three and a half hours. After the adsorption was saturated, the final production were mixed with calcium sulfate obtained form the earlier sulfuric acid waste solution to become the clay, acomplishing a total solution for EPS waste reuse.

八分鐘快速免疫呈色法檢測市售牛乳中有無摻雜粉

台灣過去40 年來,許多牛乳廠商會因牛乳供應量不足摻雜奶粉以增加利潤,為了解決這問題,本實驗提供一種快速且準確的免疫呈色法檢測牛乳中有無摻雜奶粉。因奶粉的加工過程中加熱是必須的,所以本實驗是利用單株抗體只與牛乳中因加熱而變性的蛋白質反應。實驗步驟非常簡單,首先,用一支玻棒沾附待測鮮乳,經過簡短的清洗及化學處理後,玻棒尖端會與經特殊製備的單株抗體反應。最後,將玻棒放入已製備好的溶劑中呈色。當溶液呈現綠色,表示待測乳中摻有奶粉。整個實驗流程只需短短八分鐘。據我所知,該方法是相當具有新穎性且從來未被應用過。這是個令人興奮的發現,足以解決多年來酪農業中牛乳摻雜奶粉的問題。For the last 40-years, owing to the limited supply of commercial raw milk, the industry sometimes would mix the dry milk into the raw milk to increase their profit. To detect whether or not the milk on the market contains the poor quality’s dry milk, I invented a rapid and sensitive colorimetric immunoassay. The assay essentially utilizes a monoclonal antibody that only reacted with the thermal denatured protein presented in the dry milk. First, a glass tip-stick was dipped in to the milk to be tested. Second, following a brief wash and chemical treatment, the glass tip was reacted with the monoclonal antibody that has been specifically produced. Finally, the glass tip was dipped into a reagent containing developer. When the solution develops a color in green, it indicates the milk definitely contains dry milk. The entire procedure only takes 8 minutes to finish. To the best of my knowledge, this method is novel and has never been shown before. It represents an exciting discovery that solves the malpractice of mixing dry and raw milk in our dairy industry.

水果與DNA

本研究的目的在探討數種水果分解?,對萃取洋蔥DNA 的影響,想了解在什麼情況下,哪一種水果分解?的反應最快。研究結果發現:實驗所選水果都含分解?,以火龍果汁分解?反應最快。沒有加火龍果汁分解?的洋蔥溶液,加入酒精後一樣會分層出像DNA 的白色棉絮團狀物,但分層時間長,超過15 分鐘以上;而加入火龍果汁後,反應時間明顯會增快,快至30 到40 秒內完成,可知火龍果汁分解?有催化作用。在火龍果汁的量方面,由0%逐步加到20%時,以10%反應時間就達到極限,再增加單位果汁量並沒有顯著差異。在不同溫度的火龍果汁方面,除了常溫(22.5℃)外,冷凍(-10℃)、冷藏(4.2℃)和加溫(42.9℃)反應時間都變慢,這是因為每一種?都有一個反應最佳的溫度,溫度太低,?的活性會降低,溫度太高?可能會變性失去催化作用。本研究用的火龍果分解?在常溫下的反應最快。更進一步的研究發現,以最不易被萃取DNA 的鳳梨當分解?,萃取火龍果種子的DNA 時,可以萃取到較純又多的火龍果DNA。In this study, what I notice most about the phenomena of a extraction DNA method by using fruit’s enzyme are stepping progressive researches, that are at first qualitative analysis, then quantitative analysis (volumetric analysis), and finally deep study the interaction (special phenomena) among the onion juice, fruit’s enzymes, salt solution and 95% ethyl alcohol. The enzymes of various kinds of fruits were explored in a kitchen as a laboratory. The compare methods of fruits’ enzymes reaction rate have been proposed. The hand-made experimental systems, six synchronic agitation machines and six synchronic ejectors were developed and have been set up to control the key parameters and find out the phenomena of the reaction process. The key parameters are the quantity of onion slurry, fruit’s enzymes, salt solution, 95% ethyl alcohol, temperature and mixing time. The results show that: (1) The onion DNA phenomena through fruit’s juice as enzyme is visible in kitchen as a laboratory. (2) The hand-made experimental system demonstrated an effective way to control mixing times, therefore compare methods have well been simplified. (3) All fruits’ juice has enzymes function. Normally, the reaction time in process is more than 15 minutes. (4) The enzyme of fruit Pitaya has the highest activity. The reaction time in process of Pitaya juice as enzyme in the reactant onion slurry is less than 40 second. (5)And the optimal quantity of Pitaya juice is 10% of the reactants, since the reaction rate might seem like to the saturated speed, if more than 10%. (6) The reaction rate depends strongly on temperature. The optimal temperature is room temperature, 22.5℃. Finally, the aggregating effect of the DNA and protein was also observed. The reacted products were examined with the optical microscope and the composition of the products was analyzed and identified by using the UV diffraction method. The interaction among DNA, proteins, salt, ethyl alcohol and water was investigated with computer simulation ( the software “Hyper Chem”).

估算土棲螞蟻聚落的新方法----以黑巨蟻(Camponotus friedae)為例

Estimated colony size is a basic work to count population of social insect up. It is not easy to measure any natural population accurately, in this respect, social insects here some advantages and some disadvantages over non-social ones. Previous studies have focused largely on the experimental colony of ants, such as Lasius niger, Myrmica sabuleti and Formica rufa, in the artificial nest. Furthermore, base on the division of labor, traditional Mark-Recapured Methods can not be used to measure complete colony of ant correcty. Here, we show that new method has be set up to calculate the colony of the ground black-giant ant, Camponotus fruedae,with a new indicator, ant hill. Predictions about the division of labor introduced to amend the formula of estimated population are discussed.本實驗探討黑巨蟻的蟻丘之形狀和生物意義,並分析利用何種方法能估算最準確的聚落大小。利用幾何圖形證明黑巨蟻會築似圓的蟻丘,並利用標識捕捉法的Petersen method(又稱為Lincoln index)、Schnabel method 和蟻丘大小重量,來推算黑巨蟻聚落之大小。發現黑巨蟻會築似圓度90%的蟻丘,而且標識捕捉法的Petersen method(又稱為Lincoln index)、Schnabel method 並不能精確的推算出黑巨蟻之聚落大小;應使用黑巨蟻之蟻丘的重量當作參數來推算,才不會忽略幼蟲的存在。