從導電度看乳化
界面活性劑因分子一端具極性基(polar group)而有導電性,本研究以市售之界面活性劑(PAOS洗碗精)從事其水溶液導電度探討,實驗顯示,PAOS水溶液之導電度隨溫度升高而增加,90°C之導電度約為常溫之三倍,純水之變化則極微。除溫度外,界面活性劑濃度亦影響導電度,濃度越高導電度越大,定溫(23°C)之導電度隨PAOS含量增加呈直線上升關係,PAOS含量每增2%導電度約增加1000μS,當含10%PAOS之水溶液中期導電度約增為4700μS。乳化效果對導電度亦有明顯之影響。在含PAOS 0.5~3%之水溶液中加入沙拉油,隨沙拉油加入量之增加其導電度均呈現下降現象。例如,在含有PAOS 3%之200克水溶液當中加入10克沙拉油時,其導電度約下降了15%。如果加入更多沙拉油,或者乳化攪拌過後之停滯時間過久,造成乳化平衡破壞,其導電度數據則較不規則。因此,我們可由溶液導電度之量測結果判定乳化效果,並可測定乳化攪拌之最佳條件。實驗除了以導電度探討其乳化效果外,並用顯微鏡同步觀測,以對結果做出更具說服力的解釋。將實驗數據以3D圖(立體圖)呈現以描述系統的連續變化狀態。再利用簡易的曲線回歸、斜率比較等,判定在定溫、一定攪拌條件下,清潔劑的較佳使用濃度。Surfactants have polar end groups at its molecular structure lead it with electrical conductivity in properties. This report discuss conductivity of a market purchasable surfactant named PAOS. Experiment results indicate conductivity of PAOS water solution increases with rising temperature. Triple in conductivity of this solution was found at 90°C than that of at room temperature. While the changes for pure water is very small. Except temperature influence, surfactant concentration also influence its conductivity. Generally, higher concentration gives higher electrical conductivity. At room temperature(23°C) a straight line relationship was observed between the solution concentration and the conductivity. For every increase 2% will led to increasing in conductivity for 1000 μS. When 10% PAOS in water solution is reached 4700 μS in conductivity was observed. Emulsification give obvious inference in conductivity. If cooking oil is added in 0.5~3% PAOS solution, conductivity will decrease with increasing oil added. For instance, when 10 grams of oil was added in 200 grams water solution that contain 3% PAOS, conductivity of this solution decreased for 15%. If more oil is added or setting time is too long after the solution is emulsified that destroy the emulsify balance. The conductivity of the system become irregular. In this way, it is possible to detect effect of emulsify through the measurement in its conductivity. Therefore most favorable condition in emulsification can be determined. In addition to using conductive measurement to determine effect of emulsification, microscopic technique also used trying to find even more convincible explanations. The data of different concentration experimented above can be presented on a 3D chart, we obtain several curves that can be differentially analyzed and estimated for a relatively ideal concentration, which will work more efficiently than others in the condition of the experiment.
滴水不漏-冷氣水回收應用分析
當我們在開車享受冷氣同時,此時冷氣水正一滴一滴的滴水,造成水資源的浪費,在環保意識抬頭的今天,我們即針對此一問題進行研究,主要將冷氣水回收起來,並運用在補充雨刷水箱或者提供引擎水箱或冷凝器降溫作用,是否達到提高引擎工作性能及降低冷氣冷房效果,進而達到「資源回收」的。實驗結果證明在補充雨刷水系統最符合環保概念;另在引擎水箱噴水作用時,可縮短風扇運時間並增加停止運轉時間,可增長風扇使用壽命,對下水管溫度亦可降低,可防引擎過熱;在冷凝器噴水作用中亦能明顯提升汽車冷房效果。When we enjoyed driving with cool air from air-conditioning, the condensed water from air-conditioning system is dripping from the system drop by drop. It caused the issues of the waste of water resource. Facing the greater public awareness of environmental protection issues in Taiwan, we are focusing on this issue to have further research. The idea is to re-cycle the air-conditioning condensed water and re-fill it in the water tank of wipers, the water cooling tank of engine or the cooling system of condenser. The purpose is to improve the performance of engine and enhance the cooling efficiency of air-conditioning system. It is helpful to meet the objective of water resource recycling. The result of experiment has shown that re-filling water in the water tank of wipers meet the goal of environmental protection well. Also, the water injection in the water cooling tank of engine could reduce each operation time of cooling fan and increase the idle time of cooling fan as well. It prolong the equipment life of cooling fan and lower the operation temperature of Low water pipe which prevent the engine overheating. Meanwhile, It is proved that the water injection in the cooling system of condenser can enhance the cooling efficiency of air-conditioning system.
Colour Blindness
Purpose of Research\r Colour blind individuals make up a large part of the population but are not usually considered. I aim to design an interactive guide that can be used when designing websites, social networking pages and various digital presentations to ensure that they are legible to colour blind individuals, by determining which colours generally confuse both red-green and blue-yellow colour blind people.\r Procedures\r I e-mailed my test, which consisted of 240 slides depicting every possible combination of the 16 basic web colours in the form of a frame, a heading-appropriate sized text and a paragraph-appropriate sized text, to a group of red-green and blue-yellow colour blind individuals, as well as an equally sized control group. I asked them to flip through the slides at a comfortable pace and note the slides that were difficult to read offhand, thus getting an idea of which colour combinations are not suitable for colour blind individuals, as well as the combinations that are not visible to those with normal colour vision.\r Data\r I wrote up my results using tables and stacked column graphs to determine which colour combinations were not visible to an unusually great number of test subjects. I then represented the information I collected in the form of a flash guide. This interactive guide allows one to choose a background colour from a wheel of 16 colours, and then be given a choice of appropriate text colours. The user is also presented with an example of the combination that was chosen, showing how the text appears on the background. The guide is easy to navigate and understand, can be posted on the internet or e-mailed, and is not overly technical so it can be used by designers as well as ordinary internet users.\r Conclusion\r Colour blind people are easily confused by colour combinations which might seem clear to us. My hypothesis was proved as I was able to set up a guide that would make it possible for both colour blind individuals and those with normal colour vision to read the text on websites, social networking pages and digital presentations.