DECREASING CANSAT ANGULAR VELOCITY USING DEPLOYABLE FINS
CanSat (a can-size satellite) flight data revealed the occurrence of high spin angular velocities along the vertical axis of a CanSat during a parachute descent phase. A novel aerodynamic stabilization system of deployable fins was designed to decrease angular velocity. Deployable fins were attached to servomotors (rotary actuators) to provide control authority during the CanSat descent phase. Deployable fins positions were calculated based on an onboard gyroscope data using a PID (proportional-integral-derivative controller) regulator and a moving-average filter. After the assembly and the initial testing, the system was flight-proven by dropping it from a drone with and without enabling the stabilization system