全國中小學科展

2023年

利用增強學習之Q-Learning,解決數字華容道的比較性發展研究

因為我們一開始對電腦程式語言有濃厚的興趣,所以去學習了python程式語言,後來發現到世界三大益智的華容道遊戲,似乎可以加以運用,又從文獻中發現了人工智慧之重要性和增強學習的各類法則。剛好於國中時期寫出了讓電腦產生並解決3*3數字華容道之程式。但發現4*4的遊戲竟有20兆種組合,該無法用3*3之程式思維。後來用了增強學習的Q-Learning技術,不僅完成任務,而且還可以發展出人與電腦的比賽,造成轟動、受到小朋友的喜愛~最後我們還希望自己能設計出不同的華容道加以測試,並研究深度增強學習(DRL)的原理與應用,來解決更高階的遊戲,達到增進人工智慧學習的發展。

兩種酵母菌對毛氈苔消化行為之影響

從實驗中得知毛氈苔可以消化分解酵母菌。同時酵母菌依據能忍受不同糖濃度的環境,又可細分為高糖酵母與低糖酵母。而高糖酵母與低糖酵母於細胞壁有結構上的差異〔1〕,因此毛氈苔在消化高糖與低糖酵母菌時出現不同的捕蟲行為。

以機器學習增強無人機飛行準確度

無人機在進行定位時,多半是依靠內建GPS晶片與內建慣性測量單元(Inertial Measurement Unit, IMU)進行定位,然而高精度的IMU及GPS晶片受限於高成本無法在一般無人機上運行;此外,各種定位系統均有其適用範圍,若無人機運行於定位系統之適用環境外,其定位精確度會下降,進而導致無人機飛行時會與預期路線產生誤差。 在本研究中,我利用Webots模擬軟體進行無人機模擬,藉由無人機鏡頭所拍攝的連續兩幀圖片差異,產生差異與角度及距離間的關係資料集,並利用此資料集來訓練深度神經網路,將產生模型用以模型迴歸出連續圖片間的旋轉角度偏移量,以此偏移量輔助無人機進行飛行校正。 經過多次實驗與修改,我比較了幾種不同的資料處理與分類方法,找出當中最佳結果的機器學習模型後,將此模型套入模擬環境中輔助無人機飛行,使無人機飛行於複雜環境時,成功提升飛行準確度。

surgical masks and microplastics in our airways

The surgical mask has been our daily companion since the outbreak of the Corona pandemic. The nonwovens (outer layers, not the filter membrane) from which the surgical mask is constructed consist of very long and thin polypropylene fibers. This leads to the question of whether microplastics are released during breathing through the surgical mask, which could enter the respiratory tract or the lungs. This would have a negative impact on our health, depending on the size of the detached fiber fragments - the smaller the worse because they can enter much deeper in our respiratory tract. In order to investigate the question of whether fiber fragments are released during breathing through a surgical mask, a filtration device was built. The filters were examined under an optical microscope after filtration. If fiber fragments would detach from the surgical mask, they would be found on the filter. Different surgical masks were tested, those that were not worn at all to surgical masks that were worn all day. It was found that fiber fragments were coming off the surgical masks. There were different fiber fragment types. Some fiber fragments were still undamaged (exhibited nice fractures), while others were frayed. Clump-like fragments occurred, but also smaller fine fiber fragments. All these different fiber fragments had a certain size, so that they could be called microplastics. The remarkable result of the whole study is that there is a direct correlation between the wearing time of the surgical mask and the number of detaching fiber fragments. In the case of the unworn surgical masks, 10 times fewer fiber fragments occurred during filtration than in the case of the surgical masks that were worn all day.

雙圓記-探究共邊三角形的外接圓 Journey of two circles -Inquiry of two triangles with common side.

這是一個歷時兩年半鑽研兩共邊三角形外接圓各種有趣關係的探究之旅,透過GeoGebra的輔助,經由(1)觀察圖形及數據形成猜想(2)幾何論證猜想為真的探究歷程。 我們首先探討兩共邊三角形外接圓的圓心位置、半徑、半徑和及連心線的關係,發現並證明出等腰三角形中圓心位置具特殊性、兩外接圓半徑和R1+R2與連心線─O1O2的長度都跟動點D的x坐標呈現函數關係且圖形為雙曲線的一支;據此討論出兩外接圓面積和與原三角形外接圓面積關係,同時發現∆AO1O2~∆ABC且AO1OO2四點共圓。在研究連心線時也發現,當動點D移動時,─O1O2的中點形成一條直線;每條連心線皆與以頂點A為焦點,(BC) ⃡為準線的拋物線相切。最後得出若任意∆ABC的頂點A到─BC的距離相等,連心線─O1O2所包絡出的拋物線皆全等。

An Efficient and Accurate Super-Resolution Approach to Low-Field MRI via U-Net Architecture With Logarithmic Loss and L2 Regularization

Low-field (LF) MRI scanners have the power to revolutionize medical imaging by provid- 27 ing a portable and cheaper alternative to high-field MRI scanners. However, such scanners are usu- 28 ally significantly noisier and lower quality than their high-field counterparts. This prevents them 29 from appealing to global markets. The aim of this paper is to improve the SNR and overall image quality of low-field MRI scans (called super-resolution) to improve diagnostic capability and, as a result, make it more accessible. To address this issue, we propose a Nested U-Net neural network architecture super-resolution algorithm that outperforms previously suggested super-resolution deep learning methods with an average PSNR of 78.83 ± 0.01 and SSIM of 0.9551 ± 0.01. Our ANOVA paired t-test and Post-Hoc Tukey test demonstrate significance with a p-value < 0.0001 and no other network demonstrating significance higher than 0.1. We tested our network on artificial noisy downsampled synthetic data from 1500 T1 weighted MRI images through the dataset called the T1- mix. Four board-certified radiologists scored 25 images (100 image ratings total) on the Likert scale (1-5) assessing overall image quality, anatomical structure, and diagnostic confidence across our architecture and other published works (SR DenseNet, Generator Block, SRCNN, etc.). Our algo- rithm outperformed all other works with the highest MOS, 4.4 ± 0.3. We also introduce a new type of loss function called natural log mean squared error (NLMSE), outperforming MSE, MAE, and MSLE on this specific SR task. Additionally, we ran inference on actual Hyperfine scan images with successful qualitative results using a Generator RRDB block. In conclusion, we present a more ac- curate deep learning method for single image super-resolution applied to low-field MRI via a 45 Nested U-Net architecture.

大紅斑與周邊擾動的糾葛

在本實驗中,我們亟欲了解木星大紅斑其周圍不穩定之形成機制,意即探討大紅斑渦旋本身與其周邊風切帶之互動情形。第一、我們討論了風切帶之形成:有別於前人研究,我們使用全球準地轉淺水模式,在準地轉平衡的狀態下,渦漩會逐漸合併並緯向延伸,最終得出行星風系條帶狀僅為低頻波所產生之效應,且自轉越快帶狀越明顯;第二、透過克希霍夫渦旋理論,大紅斑始終能保持橫向的橢圓形結構且長軸不會旋轉係因為風切帶之加速效應;第三、我們使用淺水模式進行模擬實驗,發現大紅斑之非對稱西側擾動形成原因有二:一為大紅斑對風切帶之加速,以及木星低緯度風速較快加上風切帶之間具有渦度梯度形成之正壓不穩定效果。二來緯度越低則行星渦度越低,慣性不穩定易形成,即力學能差異越大不穩定越易形成,而此部份我們也以水工實驗展示。

釉下光工程

釉藥為陶瓷藝術的核心呈現,本研究利用釉藥作為媒介,融合資訊工程的隨機森林演算法主題進行釉藥燒製後成果的預測。從陶藝釉藥的公開網站篩選釉藥配方及圖片色標建立數據庫,後續能進行未燒製前配方成果的模擬建模。 利用已發展千年的釉藥調製技術和材料,以塞格式、一維二元…常見調釉藥比例的方式,同時記錄大量釉藥數據庫,結合現代科技分析方法快速模擬成品樣貌,未來可應用於磁磚或是釉料產業的釉藥顏色矯正。 釉藥具有高度藝術及商業價值。本作品以東方傳統技藝結合現代機器學習的演算法。數據庫的建立用於結合眾多陶藝家製釉經驗,來達成預測釉燒後的釉色。故此作品的未來發展有極大的前瞻性。

從篩選植物澱粉與顆粒製程改質到手術防沾黏之效用評估與材料檢測

近年有許多研究開發粉末顆粒的防沾黏材料,在手術中可以輕易地噴灑在傷口附近達到防沾黏的目的。本研究首先篩選天然植物澱粉,探討並比較不同澱粉作為防沾黏材料的合適性,其次,在顆粒改質的乳化法中採用不同離子來製成防沾黏澱粉,並比較材料特性,包含粉末顆粒大小形貌、吸水效率、黏度。我們比較市場上多種食用性澱粉,乙醯化磷酸二澱粉具有最高約的吸水效率598%。在此研究中我們以乳化法將界面活性劑接枝在澱粉顆粒的表面來增加材料的親水性,並在乳化法中添加不同的離子化合物,結果顯示氯化鈉(NaCl)改質的乙醯化磷酸二澱粉,其吸水效率可進一步提升到1328.3 %,使用氯化鉀(KCl)改質的澱粉為1131.6%,而使用氯化鈣(CaCl2)則是1096.9%。實驗結果與討論顯示越高的吸水率有越好的抗沾黏效果。

探討圓及橢圓上的格子點個數之連乘積表達式

在坐標平面上, 坐標均為整數的點稱為格子點,在這篇作品中,主要探討圓及橢圓x^2+sy^2=m上的格子點個數,並且此個數以連乘積表達式呈現,其中s為黑格納數,此時虛二次體Q[√(-s)]的整數環為唯一分解整環(簡稱UFD),由此性質可得到虛二次體的整數環中任一元素的分解有唯一表示法。 首先探討質數p在虛二次體Q[√(-s)]的整數環中的分解性,是根據分解性分成四類,再由四類決定m的不可約元分解,進一步推導出x+y√s i,x-y√s i可能的唯一表示法,再由唯一表示法來計數圓及橢圓上的格子點個數。