全國中小學科展

2023年

利用qRT-PCR探討塑膠微粒對中華擬同型蚤生長和生殖機制的影響

隨著科技的進步,塑膠產品逐漸在全球遍布,甚至造成許多的環境汙染,其中看似消失的塑膠,其實已被分解為非肉眼可見的塑膠微粒,並且正在影響整個生態,並且在最底層的生物體內累積,透過生物放大作用不停的向生物鏈頂層增加。 探討塑膠微粒與中華擬同型蚤生長和生殖機制的影響。延伸對生殖機制、內分泌系統的影響,產生冬卵的特性,以及與體長、生長抑制、延後抱卵的關係。期望可以透過研究成果類推至生態系中的其他生物,例如魚類、鳥類和人類,進而發展成生物鏈之累積和影響。

冰棒棍骨牌模型建立與運動分析

本研究主要研究冰棒棍骨牌在崩解時波峰的軌跡,並且逐步分析物理原理。首先,討論冰棒棍的基本性質,接著拍攝崩解時的影片,並分析產生眼鏡蛇波的原理,過程中發現了不同的排列順序會分別產生眼鏡蛇波或C波,以及當以眼鏡蛇波結尾時,波峰都會有一個旋轉的現象我們使用了Tracker程式來追蹤冰棒棍骨牌崩解時的波峰軌跡,且發現大部分冰棒棍軌跡都呈現相同的函數關係,並建立模型來研究其性質。 本研究已有初步的結果,我們計算出了冰棒棍的楊氏係數,並且做出了冰棒棍波形的擬合。另外也從不同觀察角度觀察出冰棒棍的運動情形,分析出單一冰棒棍的整體受力與運動情形。根據單一冰棒棍的轉動狀況,觀察出類似於進動現象,並對此深入討論。 未來我們希望能夠結合楊氏係數、冰棒棍波形疊合以及冰棒棍受力情形來建立專屬於冰棒棍波的物理模型,並研究其轉動互換模式。將其利用在工程學上。

磁性顆粒在變化磁場中的反向運動及運輸

本研究探討磁性顆粒在變化磁場中的運動。燒杯內置入水和氧化鐵粉,構成磁性膠體系統,將燒杯放在磁攪拌器檯面上運轉,發現奇特的水流方向,有時順時針方向運轉,有時則逆時針。此現象是否與氧化鐵粉分布在水面或底部有關?底部的氧化鐵粉出現特別的反向運動,原因為何?深入研究磁性顆粒的運動,分析磁場變化、表面摩擦力對其影響,以及顆粒反向運動時,推動物體的力學分析,並自製磁鐵轉盤分析磁場分布對氧化鐵粉顆粒的影響。

上皮細胞黏附因子(EpCAM)對腫瘤增生影響之機制探討

上皮細胞黏附因子 (EpCAM) 參與了細胞的黏附、信息傳遞、增殖及分化等功能,並在惡性腫瘤組織中大量表達。另外抗EpCAM中和性抗體可以阻斷EpCAM訊息傳遞,進而引起癌細胞PD-L1的表現量降低並促進T細胞的毒殺活性。為了觀察EpCAM是否會對癌細胞的增生、轉移以及侵入能力造成影響,我們將細胞分為野生型 (wild type) 和EpCAM基因剔除細胞株 (EpCAM knockout) 進行實驗。首先,我們以Western-blotting和qRT-PCR確認EpCAM基因剔除組的EpCAM基因有確實被剔除,再進一步利用細胞存活率及細胞群落實驗證實EpCAM會促進癌細胞的增生能力,並分別藉由EGFR的抑制劑Afatinib與HGFR的抑制劑Crizotinib對於癌細胞存活率的實驗證實EpCAM 對於EGFR與HGFR的訊息傳遞扮演重要角色。接著分析EpCAM對癌細胞轉移及侵入能力的影響,γ-secretase和ADAM17皆為裁剪EpCAM進行訊息傳遞的重要酵素,實驗中的癌細胞分別以γ-secretase和ADAM17的抑制劑DAPT和TAPI-1處理,證實EpCAM的訊息傳遞與癌細胞轉移與侵入能力有關。接著我們以EpCAM中和性抗體處理癌細胞後,證實EpCAM中和性抗體確實會促使癌細胞凋亡。最後我們利用Western blotting分析EpCAM對於不同激酶磷酸化的蛋白質表現量之影響,找出EpCAM下游訊息傳遞的完整路徑,期望能找到治療癌症的關鍵。

利用增強學習之Q-Learning,解決數字華容道的比較性發展研究

因為我們一開始對電腦程式語言有濃厚的興趣,所以去學習了python程式語言,後來發現到世界三大益智的華容道遊戲,似乎可以加以運用,又從文獻中發現了人工智慧之重要性和增強學習的各類法則。剛好於國中時期寫出了讓電腦產生並解決3*3數字華容道之程式。但發現4*4的遊戲竟有20兆種組合,該無法用3*3之程式思維。後來用了增強學習的Q-Learning技術,不僅完成任務,而且還可以發展出人與電腦的比賽,造成轟動、受到小朋友的喜愛~最後我們還希望自己能設計出不同的華容道加以測試,並研究深度增強學習(DRL)的原理與應用,來解決更高階的遊戲,達到增進人工智慧學習的發展。

整數模n的加法組合設計之探討

將兩個相同的n角齒輪重疊後,再砍去若干個特定重合的角,欲使上層齒輪在繞公轉軸旋轉一圈的過程中,兩齒輪皆有重合的缺角,在這個目的之下探討砍去的角數量,使其最小化,將其最小值稱為n角齒輪的最小可行數,以符號記為f(n)。我的研究是考慮自然數 ,對於砍去角的位置,制訂設計方法,在數量上求得f(n)較好的上界與下界。我將這個問題代數化,運用集合與數列的概念進行研究,進而轉換為組合設計的最佳化問題。特別的,若齒輪中任意兩個缺角在圓周上的最短距離皆相異,則表示砍去重合角的位置為最緊緻的狀態,將這些特殊的缺角位置稱為完美集合,我也試著探討缺角為最緊緻的特殊情形,分析完美集合的存在性。

影像辨識 PCB電路板回收定價機

因應氣候變遷碳,國際興起碳中和與循環經濟熱潮,而廢棄電子垃圾就像是一座城市礦山,蘊藏豐富的回收價值。本研究運用深度學習物件偵測來辨識廢棄PCB電路板上的有價值零件,以YOLO物件辨識方法建了一個AI影像辨識電子零件模型程式、常見PCB電子零件的金屬成分含量、紅外線影像處理,以及運用PID控制和圖像處理來控制傳送帶。實作出一個能估算廢棄電路板回收價值的原型機。其結果顯示對於鋁金屬和銅金屬有相顯著的回收效果。本研究希望讓大眾意識到廢棄家電的潛在價值,增進電子廢棄物意願,促進再生金屬產量,實現碳中和終極目標。

醃漬物中的乳酸菌對胃細胞的影響分析與探討作為食用益生菌之可能

研究發現食用醃漬食品能夠讓腸道菌相平衡、提高免疫力、降低血脂血壓等。科學家們從這些食物中分離出乳桿菌(Lactobacillus)、鏈球菌(Streptococcus)和明串球菌(Leuconostoc)等。本研究希望從醃漬食品中分離出能夠維持腸道健康的益生菌。首先,我們從台北的傳統市場收集醃漬食品,利用選擇培養基分離細菌。通過PCR確認為乳桿菌屬後,測量他們的胞外多醣產量。我們發現菌株1-1、 3-2、 3-4、 3-6-2、和 3-8能夠在含有低酸和膽鹽的環境生存,並測試他們對人類胃細胞的毒性。在MOI=10的情況下,所有菌株都能維持細胞80%的生存率。但是,菌株1-1、 3-2、 3-4、 3-6-2、和 3-8的細胞貼附能力非常弱。除此之外,我們發現菌株PV15、 1-1、 3-2、 3-4、 3-6-1、 3-6-2、和 3-8的上清液能小幅度地抑制大腸桿菌生長能力。未來,我們希望能進行腸道細胞的實驗(CACO-2),並利用動物來檢測菌株維持腸道健康的能力。

三角形周界中點幾何論證與旁切圓相關性

本文旨在探討三角形周界中點的幾何問題,以及周界中點與旁切圓的相關性質。在討論三角形問題的過程中,注意到許多關於周界中點的延伸性質,起初很難發現旁切圓之間的關聯性,後來決定以三角形周界中點為主軸,找出其與旁切 圓的幾何特性。發現延伸的圖形後,除了上網查詢相關資料,我們更利用幾何繪 圖軟體進行幾何問題的實驗與論證,透過觀察、提出假說,並運用已知的定理推 得研究結果。 我們發現了許多性質,其中包括:畫出三角形並分別做出三邊的旁切圓,各 邊切點即為該邊的周界中點,而三角形頂點與對邊周界中點連線共點即為界心(納格爾點𝑁𝑎),此點和三角形的重心 G、內心 I共線,且(GNa) ̅=2(GI) ̅;而三邊旁切圓圓 心會共圓,其圓心和三角形三個周界中點的外接圓圓心以及𝑁𝑎也會共線等等。 透過此次研究,讓我們對數學有更深入的瞭解,也期許未來能有更多的發現。

銀摻雜石墨烯異質結構應用於高效析氫反應

高性能電極對於析氫反應(hydrogen evolution reaction,HER)在未來能源需求中極為重要。高效析氫取決於電極特性可否催化HER,降低電解反應的過電壓。文獻記載石墨烯適合做為電極表面的HER催化劑,利用薄層微量雙金屬的製程技術,可從電極背面析出奈米銀並摻雜到電極表面石墨烯,形成銀摻雜石墨烯(Graphene/Ag-doped)異質結構,增強電極表面石墨烯鍍層的電導。本研究優化此技術,將銀奈米結構沉積在石墨烯的缺陷及晶界邊緣,透過鍍銀技術與實驗參數(化學氣相沉積法的加熱溫度、時長和通氣量),製造出嶄新的Graphene/Ag-doped異質結構材料,增強了電極電導及快速傳輸電子連接的電極表面活性點,大大提高HER的效率。量測結果證明Graphene/Ag-doped異質結構較單層石墨烯具有超過10倍的導電度,電流密度增加20倍,塔弗斜率(Tafel slope)減少50%;與文獻中使用單層石墨烯/奈米碳管異質(rGO-MWCNT)之最佳材料相比[4],本研究之Graphene/Ag-doped異質結構的Tafel slope為80 eV/dec,在析氫反應之消耗能量已大幅降低到幾乎減半。本研究成功製造出高導電、低過電壓,及高效率析氫的電極材料,為未來綠色能源開闢了途徑。