全國中小學科展

2023年

Development of UV-Protection Roofing Tile from Nitrogen-doped Graphene Quantum Dots (N-GQDs) for Rubber Drying Chambers

Improved methods of processing latex into rubber sheets will improve the incomes of small rubber producers. There are two ways in which latex can be processed into rubber sheets: fumigation and solar incubation. The fumigation method is expensive and produces pollution, but solar incubation can cause dark, sticky rubber sheets due to UV radiation, which reduces their value. A low-cost and environmentally-friendly solution to this problem was investigated here. A UV-protective roofing panel made using Nitrogen-doped Graphene Quantum Dots (NGQDs) was developed and tested. N-GQDs were made using the hydrothermal process for 2 and 4 hours (T2 and T4) and the solvothermal process for 4, 6, and 8 hours (TS4, TS6, and TS8). It was found that all types of N-GQDs absorbed light in the UV range, withT4 showing the greatest absorption. T4 had the greatest Fluorescent Intensity (FL) value, emitting blue light, while for the solvothermal method TS6 had the highest FL value, emitting red light. T4 and TS6 were chosen for further testing, and were applied to a clear roofing tile. After installing the roof on the chamber, the temperature inside was higher than outside. Then we measure the UV protection efficiency of the roof which was 93.27%. The average temperature was 45℃, which is the temperature for drying rubber sheets. Due to the roof’s capability to absorb UV radiation and heat the chamber, our N-GQDs roof has a great ability to produce higher-quality rubber sheets.

以最佳化演算法進行鐵路時刻表排點

鐵路時刻表排點直到目前為止仍十分仰賴人工作業,且排班優劣對於乘客服務品質有顯著的影響。本研究採用啟發式最佳化演算法以及模擬器進行旅客列車鐵路時刻表排點,希望能夠找出一份針對旅客需求,能夠提升旅客運輸成功率且降低旅途時間的時刻表。我們提出一種班表編碼機制,可依此機制產生班表草稿。我們研發的模擬器可將班表草稿轉換為合法無衝突之班表。最後,透過登山演算法來搜尋班表草稿,並以模擬器評估班表優劣,我們實現了一個自動化排班系統。實驗結果指出我們的模擬器能夠有效率地產生無衝突之班表,且所提出之演算法操作有助於提升運輸成功率和降低旅途時間。

探討多子連線的最小阻隔數

2021年國際科展中,有作品探討鉛直與水平排列的支配數,而本研究從五子棋的想法出發,將前述研究進行重要的延伸與改變,探討在a×b棋盤中,「米」字方向無p子連線時,所需的阻隔數最小值。由於有界棋盤比無界棋盤複雜許多,因此我們先在無界棋盤中找出符合阻隔限制的「完美型態」,並找出存在至少一種「完美型態」的p值集合Ω。研究發現,只要是可以表示為p=6k-1或p=6k+1(k∈N)的正整數p,皆可以型態DT(p,d)阻隔。接著我們推廣至有界棋盤,先探討所有p值的f(a,b;p)上界與下界,再針對Ω中的p值做討論,利用「任意1×p區域至少有1個阻隔」的性質導出「完美型態」下長或寬為kp(k∈N)的下界,並找出非常接近f(a,b;p)的上界。我們也將二維的探討方式與結果延伸至三維,找出所有p值的f(a,b,c;p)上下界與可使阻隔型態DT(p,d_R,d_h)為完美型態的p值集合。另外我們也找出嚴格對角拉丁方陣可對應成「完美型態」之必要條件。

可撓式高分子光電材料的研製與應用

當軟性穿戴裝置成為趨勢,可撓式光電材料極需被開發。聚矽氧烷(PDMS)是常見的高分子軟材料,其合成簡單,也是目前廣泛研發應用於功能性透明薄膜的材料,但其本質不具導電性。文獻查詢得知利用銀膠與PDMS之混合物及矽基板,配合旋轉塗佈可開發出銀–聚矽氧烷新材料,並可開發出I-V線性、非線性之電學及感光元件,然而發現其成品再現性較低,且使用硬性矽基板,大大限制了可撓性光電材料的應用性。本研究著重軟性材料作為基板的製程研發,並比較可撓式元件產品的電學性質,使用的高分子基板包括各種市售薄膜。其中當Ag-PDMS質量比為1.4:1.0,以軟性PET膜片可呈現最佳結果,可呈現I-V線性電學元件的材料特性,其電學特性與文獻使用之矽基板一樣好。使用軟性PET膜片(1.5 cm*1.0 cm)為基板製程條件中(Ag-PDMS/PET),可撓式的Ag-PDMS/PET的電學特性不會受到旋轉塗佈轉速影響,而是受到施加電壓的影響。重複文獻的硬性矽基板條件(Ag-PDMS/Si),施加電壓在40V之前,電阻值為才能使硬性Ag-PDMS/Si成為I-V非線性之電學元件,但是本研究開發的軟性Ag-PDMS/PET要表現出I-V非線性電性的施加電壓需求,只要5V就輕易達成,成為極佳的節能電子元件。文獻中的硬性Ag-PDMS/Si具有光電特性,本研究之軟性Ag-PDMS/PET的光電特性的研究仍在進行,期能找到最佳條件。本研究亦正進行以鎳取代銀,以降低成本,期能未來朝穿戴式醫療裝置的提供製程簡單的可撓式高功能的節能材料。

Study of regenerative and ontogenetic processes under the influence of EHF EMR.

The increased sensitivity of aquatic organisms to the effects of EMF has been proven by numerous experimental studies. It has been repeatedly noted that exposure to EMF of certain frequencies and intensities leads to disruption of physiological functions, orientation in time and space, changes in the behavior of organisms, suppression of motor activity. Other ranges of electromagnetic radiation, on the contrary, can cause the effects of increased regeneration, growth rate and survival. In connection with these trends, the purpose of our research is to analyze the effects of the influence of electromagnetic radiation of extremely high frequency on the development of the Xenopus laevis and the regeneration of newts and planarians

DECREASING CANSAT ANGULAR VELOCITY USING DEPLOYABLE FINS

CanSat (a can-size satellite) flight data revealed the occurrence of high spin angular velocities along the vertical axis of a CanSat during a parachute descent phase. A novel aerodynamic stabilization system of deployable fins was designed to decrease angular velocity. Deployable fins were attached to servomotors (rotary actuators) to provide control authority during the CanSat descent phase. Deployable fins positions were calculated based on an onboard gyroscope data using a PID (proportional-integral-derivative controller) regulator and a moving-average filter. After the assembly and the initial testing, the system was flight-proven by dropping it from a drone with and without enabling the stabilization system

以電場及奈米微粒提昇普魯士藍鈉二次電池的效率

本研究製作可以容納鈉離子進出的宿主材料NaFe[Fe(CN)6]普魯士藍(Prussian blue, PB),塗佈在鋁箔上製成陰極板,配合陽極鈉金屬板,壓製成二次鈉電池。本研究創新在於(1)使用PB 奈米微粒; (2)塗佈電極時添加鎳奈米微粒或銀奈米微粒,以協助充放電時的氧化還原反應效率; (3)陰極漿料置於 143 V/mm 電場下陰乾,推動立方 PB 以垂直於陰極板的方向排列,正向面對鈉離子的流動方向,提升鈉離子嵌入或脫嵌 PB 的效率。連續充放電循環,發現添加金屬奈米微粒或陰極板在電場下陰乾,均能有效提升電池電容量及穩定度。以 39 nm普魯士藍微粒添加 15% 82 nm 銀奈米微粒,在 143 V/mm 電場下陰乾 24 小時,電容量得以提升 3 倍,並在 50 次充放電循環後電容量未見衰退,維持在 90 mAh/g。

少數決之進階討論

「少數決遊戲」就是針對N個玩家詢問一些只能回答是或否的問題,而問題回答不必符合實際狀況,由少數一方獲勝,這個部分的定義與少數派賽局(Minority Game)中的定義相同,不同處為獲勝者須進入下一輪的問題,直到剩下一位或兩位玩家為止,由剩下玩家獲得最後的N單位獎金,但所有人需償還原來遊戲開始時所付出1單位的代價。前作「詐欺遊戲之少數決」[1]即對該問題作詳細的探索,但僅限於一組結盟人數。本作品是將前作內的獲利期望值與演算法作進一步的發展討論,並對結盟人數超過必勝結盟人數時的期望值變化做討論,得到賽局理論中的「少數派博弈」類似的結論。本作品更進一步討論兩組結盟人數的結果與期望值,後續的變化有些類似賽局理論。

有感而發-結合感測器與自動控制之自駕車煞車系統評估

自駕車的相關研發日益受到重視,尤其在複雜的交通運輸中提供更安全、更有效的防護是自駕車的發展重點之一。本次研究主要探究不同距離感測器與不同PID自動控制組合,針對靜物與移動障礙物進行煞車成效分析。研究結果顯示不同的距離感測器的精準度與穩定性不同,在固定障礙物狀態下雷射距離感測器因為精準度和穩定度較高,而超音波較容易受到外界干擾,所以比較不精準。由於超音波距離感測器的偵測範圍廣,所以可以事先偵測到移動障礙物,反而提供自動控制較多的反應時間,在加速度的表現上較為穩定.自動控制表現上P控制的情況下機器人常常卡在最後一點點的距離,不過超音波感測器因為會有點誤差,所以反而會比雷射感測器快停下來;PI控制因為可以消除穩態誤差,所以時間消耗都是最短的;PD控制原本的功用應該是快速修正,由於D控制的增益常數(gain)過大,影響D控制作用,因此PD控制的效果沒有特別突出的部分。

軌道安全,唯快不破-高效能AI軌道異物偵測系統設計之研究

臺鐵太魯閣號於 2021 年 4 月撞擊滑入軌道的工程車的事故,是 60 年最嚴重一場意外。 北捷文湖線也曾有大型招牌掉落事件,顯示軌道安全的重要性。本研究參訪高鐵、臺鐵、北 捷和新北捷-淡海輕軌,將四大軌道公司的異物偵測系統做探討。採用 Yolo 系列物件偵測演 算法,進行模型訓練,設計一套「高效能 AI 軌道異物偵測系統」。將攝影機架設在車頭,並 加裝望遠鏡頭,達到遠距離的預警。採用可見光攝影機與 AI 物件偵測的技術,並應用內嵌 系統 Jetson TX2,讓列車提前確認是何異物,提升安全性,採取不同煞車措施,降低誤點率。 以台北捷運文湖線為實驗場域,測試各種天候條件,如:晴天、雨天、傍晚等。也在不同場 域實測如:臺鐵內灣線、淡海輕軌。本系統平均準確率 95% mAP 與運行的幀率達 40FPS, 能縮短辨識時間,讓駕駛能立即反應和提前預警,達到保障人車安全的目的。