全國中小學科展

2023年

選擇相對論-研究零元效應與需求強度關係

「零元效應」所指的是消費者面對同類性質之高低價兩商品,當低價商品從原價降至零元,而高價商品同時等量降價時,消費者對低價商品之偏好將顯著增加,並且因確定性效應、損失規避及稟賦效應造成。研究目的驗證零元效應的強度與成因,設計實驗零元效應於不同消費領域、族群是否皆成立;設計兩種商品,A為高品質高價位,B為低品質低價位,兩種定價情況,定價情況1,A商品為A元,B商品為B元,定價情況2,A商品為A-B元,B商品為B-B元(零元)。實驗結果使用Wilcoxon 等級和檢定,以需求光譜進行分析,並與 Dan Ariely (2007) 實驗結果進行比較,發現其差異不大;結果發現受試者身分不影響零元效應存在,除「必需品」外,其他品項皆存在零元效應,並且發現零元效應的強度受需求強度影響,若需求越強,零元效應將越弱。需求遂受試者環境影響改變,故不同國家將有不同結果。

Two Klatovy copies of Šimon Brixi's Domine ad Ad juvandum me festina and his time

The main goal of this paper was a creation of musical score for the composition from the 18th century Domine ad Ad juvandum in A minor and C major composed by Šimon Brixi. Another goal was finding as much information as possible related to this composition and summarize everything possible that was written previously. Separate parts were transcribed into one partiture. Nevertheless there were difficulties like mistakes in sheet music (corrected according to harmony of other voices), missing beats (replaced by identical parts of score), differences in period station. Hard times also bring on differences of period notation. The resulting musical scores can be directly used for music production, which is schemed for the next year. The second part was researching new or never-published information related to these compositions. Here I describe Š. Brixi´s life. I managed to read out the cause of Šimon Brixi death in a chronicle, which was not in the publication I found. Brixi died of tuberculosis like his son. Transcriptors, J.V.Flaška and J.J.Hoffman, are also mentioned. Lastly the information about sheet music itself and its historical context were described. Another discovery was an identification of watermark on sheet music paper. Assuming the sheet music is truly transcribed in 1742 the Kolinec paper mill watermark on the sheet music paper is the oldest evidence of its use. In this paper I summarized the historical context of the baroque era including social life, art and culture.I mentioned the most important events that were crucial for historical development in Bohemia and especially in the Klatovy region. This context can be useful for today’s musicians who want to understand the historical background and express the composition with full respect to the time of its creation.

自製模型模擬地震對地球自轉速率變化之探討

為了解地震對地球自轉速率變化之影響,本研究使用自製地球模型、模擬板塊裝置,並運用 Tracker 等程式,模擬地震後地球自轉變化情形。 自製地球轉動時角速度有週期變化,可當作模擬地震發生的背景資料。研究結果顯示,加重板塊負重,角速度無明顯變化趨勢,但自轉一圈所需時間皆增加。改變板塊位置,北緯 22.5 度組角速度圖形高峰值及振幅顯著增加,赤道、北緯 45 度組變化則不明顯。 板塊移動與球體旋轉同向時,角速度變化振幅明顯加大,反向則不明顯。在角速度相對小時移動板塊,角速度趨勢往下,平均角速度減少;反之,在角速度相對大時移動板塊,角速度趨勢往上,平均角速度增加。 本模型模擬之地震所引發之日長改變量,經由換算相當於自轉週期 24 小時的地球改變了 36 分鐘。

DEVELOPMENT OF PAPER-BASED ORIGAMI BIOSENSOR PLATFORMS FOR COLORIMETRIC DETECTION OF BIOCONTAMINANTS

Infectious diseases caused by bacteria from biological pollutants pose a great burden in terms of diagnosis and treatment, and millions of people worldwide die from bacterial infections. Detection of bacteria plays a critical role in clinical diagnosis and control of contamination, but is not accessible due to the high cost, complex devices and equipment required. In the project, an alternative to existing methods, a paper-based biosensor for the detection of model organism E. coli bacteria, which is visible, low cost, easy to use, can be integrated with a smartphone, is based on rapid color change in the exposed environments, drinking and pool water, wastewater, beverage products. platforms were developed. For the specific detection of E.coli bacteria, two different biosensors have been developed that can perform colorimetric detection in a user-friendly origami design, minimizing microchip and processing steps based on antibody-bound PVDF membrane and filter paper-based immunological method. In the presence and absence of target bacteria E.coli, the lowest detection limit of the biosensors obtained by using paper-based platforms that create a distinctive color on them, depending on the concentration, was 0.9x103 bacteria/ml for origami biosensor, 2.7x103 bacteria/ml for microchip biosensor and the widest dynamic linear operating range was calculated as 103-107 bacteria/ml. With the biosensor platforms we have developed, the use of only one smartphone for both qualitative and quantitative, visible results and analysis within minutes constitutes the originality of our project. With these promising results, the biosensors we have developed can also be used for the detection of different biological pollutants, do not contain complex devices and can be easily produced in large scales. We believe that the biosensors we have developed for the detection of biological pollutants in water and beverages, especially in regions where test laboratory infrastructure is not available, will contribute to the literature, public health, health economy and sustainable development goals such as clean water and sanitation, health and quality life, and life in water.

Forming Polygons with Broken Pick-up Chocolate Bars and Spaghetti Noodles

”The broken pick-up sticks problem” is proposed by T. Kyle Petersen and Bridget Eileen Tenner in 2020. We solve the problem by considering the discrete version using random variables, and the limit behaviour of the discrete version gives us a combinatorial solution to the original problem. We also evaluate the probabilities of the triangles formed by the broken/pick-up sticks satisfying some specific geometric conditions with various techniques, including calculus and elementary number theory.

二氧化碳高選擇性轉化生成合成氣之碳中和工程

近年來碳排放的淨零是全人類所想達成的共同目標,因此本研究透過油浴將鐵、鈷或鎳離子與配位基配位,並形成以2-甲基咪唑為配體的前驅物沸石咪唑骨架,以及以雙氰胺和葡萄糖反應為配體的前驅物類石墨相氮化碳,再鍛燒形成可導電的催化劑。研究者分別以上述兩系列的金屬單分散催化劑,使用氣液分隔的氣體擴散電極進行電解人工光合作用,將CO2高選擇性地還原為CO,並探討各催化劑產CO效率。本研究發現鎳金屬類石墨相氮化碳對CO2還原反應的選擇性極高,能使產CO效率達到99%。而CO作為合成氣已有成熟的工業製程,能生成許多具經濟價值的產物,工業需求量非常大。未來若實際執行,則有助碳中和目標的達成。

Synthesize Sodium Sesquicarbonate and Increase Yield

In order to recycle disposable diapers, we investigated the conditions where sodium sesquicarbonate (Chemical formula Na2CO3・ NaHCO3・ 2H2O hereinafter called sesqui) precipitates selectively from sodium carbonate and the conditions for high yield. For the selective precipitation of sesqui, we defined the time required for the reaction solution to pass through the sesqui precipitation area in the Na2CO3-NaHCO3-H2O phase diagram (45°C) as Δ t. As a result, we revealed that Δt is involved in the selective precipitation of sesqui, and that we can synthesize sesqui without the expensive addition of L-Arginine as used in a previous research. Also, we proposed the “Stay method”, in which the supply of CO2 is stopped for 30 minutes to the lengthen the Δ t, and found that we could synthesize sesqui selectively even under conditions in which sodium bicarbonate is likely to be precipitated as well. Regarding the high yield of sesqui, the yield was greatly improved by the common ion effect of Na by adding NaOH to the reaction solution, sesqui synthesis by repeated reactions with CO2, and sesqui recovery by adding the anti-solvent ethanol, reaching a sesqui conversion rate of 95%. This means 109 g of sesqui can be synthesized from 100 g of Na2CO3. Moreover, we confirmed that these synthesized samples have almost the same detergency as commercial sesqui. We did a test calculation to reveal the usefulness of this research. First, if diaper recycling technology is put into practical use and all used diaper waste in Saijo City can be recycled, a reduction of 534 t/year of used diaper waste can be expected. This corresponds to a 2.3% reduction in Saijo City's waste output. From the ash that would ultimately remain after being recycled, we expect up to 35.3 t/year of synthesized sesqui using our experimental method. In addition, a CO2 reduction of 8.2 t/year is possible in the process, which is about equivalent to the volume of one gymnasium.

斜槓元宇宙-智慧新農機:全球首創利用Arduino自動偵測「迴轉耕耘機」犁耕土壤深度的火犁仔(曳引機)、解決人類糧食危機

本研究以機電整合,發明了【曳引機迴轉犁偵測系統】,將大型農業機械智能化,並優化及整合工程技術,設計了六大系統,藉由量化評工程效益及作物的產量變化,觀察設計成效。 根據文獻,水稻管理使用「灌溉系統」+「雜草抑制蓆」+「生物肥料」的機制,可以增加產量[1,2]。因此我們優化這些機制,並設計「精準深耕」、「智慧噴桿」、「滴灌系統」形成六大系統。利用自創的【曳引機迴轉犁偵測系統】,犁耕時就可以在每一寸土地上,精確控制土壤深度在25cm的「精準深耕」。我們也發現,在這六大系統的協同效應下,不僅省下3~12倍的作業時間,同時在加乘效果的作用下,產量可以大幅提高至79%。 本實驗花二年時間,在台中清水地區1.2公頃的農地,實際建構這六大系統。並使用無人機偵測飛行高度的3D立體影像感測器、Arduino微控制器、燒入自行設計的Arduino C程式,成功發明【曳引機迴轉犁偵測系統】,並裝在大型曳引機,用來偵測迴轉耕耘機翻鬆土壤的深度,同步將該數據立即顯示在駕駛室的儀表板。 目前全球六大品牌大型曳引機,造價超過新台幣400萬元,尚無一款具有本研究自創的迴轉犁自動偵測功能。

Designing a LiDAR topographic navigation system: A novel approach to aid the visually impaired

The WHO reports 2.2 billion people internationally have a form of visual impairment, with Perkins School of Blind adding that 4 to 8 percent (8.8 - 17.6 million people) solely rely on a white cane for navigation. In an interview by Stephen Yin for NPR, visually impaired interviewees claimed that a white cane was ineffective as it failed to detect moving obstacles (ex. bikes), aerial obstacles (ex. falling objects), and it became physically demanding after a prolonged period. This problem can be solved with a headset that integrates LiDAR technology and haptic feedback to provide a real-time assessment of their environment. Theoretically, the device will determine how far an object is from the user and place it into one of three conditionals based on distance (0- 290mm, 310-500mm, 510-1200mm). As the user gets closer to the object, the haptic will vibrate more frequently. The device has 11 LIDAR sensors, beetle processors, and ERM motors so that when the LiDAR detects an object, the device will send a haptic signal in that area. It not only identifies the existence of an object but it tells the user its relative position with a latency period of approximately 2 milliseconds. When testing the device, a simulated walking environment was made. Ten obstacles were included: five below the waist (72”, 28”, 35” and 8.5” tall sticks) and five above the waist (paper suspended 6”, 10”, 48” and 28” from the ceiling). The white cane detected 4.1 obstacles, whereas the device detected 7.3 on average. The LiDAR navigation system is 178% more effective at detecting objects comparatively. Visually impaired individuals no longer must rely on the white cane; rather, using this device, they can detect small, moving, and aerial objects at a much faster, and more accurate speed.

塑膠發電– PLA降解之燃料電池研究

本實驗主要將PLA塑膠產品以水解降解、光降解方式形成小分子乳酸單體或其寡聚物,作為燃料電池之燃料,使其再循環產生能量,減少塑膠產品對環境之汙染。PLA降解之方法,可將PLA浸泡於低濃度氫氧化鈉溶液或照射UV光進行前處理再置入乙醇中,或直接放入高濃度氫氧化鈉中並加熱將其迅速降解,後者可於5分鐘內將市售PLA產品完全降解。以上述PLA降解溶液作為燃料電池之燃料,同時以自製氧氣供應裝置提供氧氣,作為電池兩極。電極為鍍鉑鎳鉻絲,電解液為0.7M氫氧化鈉溶液,電壓可達0.85V。PLA雖為生物可分解性塑膠,現今仍主要以燃燒方式處理,此迅速降解PLA之方法可解決目前使用後處理之困境。同時本實驗為首次利用乳酸作為化學燃料電池之燃料,並成功使其產生電力,此研究可提供PLA塑膠分解與利用之新思維。