Designing a LiDAR topographic navigation system: A novel approach to aid the visually impaired
The WHO reports 2.2 billion people internationally have a form of visual impairment, with Perkins School of Blind adding that 4 to 8 percent (8.8 - 17.6 million people) solely rely on a white cane for navigation. In an interview by Stephen Yin for NPR, visually impaired interviewees claimed that a white cane was ineffective as it failed to detect moving obstacles (ex. bikes), aerial obstacles (ex. falling objects), and it became physically demanding after a prolonged period. This problem can be solved with a headset that integrates LiDAR technology and haptic feedback to provide a real-time assessment of their environment. Theoretically, the device will determine how far an object is from the user and place it into one of three conditionals based on distance (0- 290mm, 310-500mm, 510-1200mm). As the user gets closer to the object, the haptic will vibrate more frequently. The device has 11 LIDAR sensors, beetle processors, and ERM motors so that when the LiDAR detects an object, the device will send a haptic signal in that area. It not only identifies the existence of an object but it tells the user its relative position with a latency period of approximately 2 milliseconds. When testing the device, a simulated walking environment was made. Ten obstacles were included: five below the waist (72”, 28”, 35” and 8.5” tall sticks) and five above the waist (paper suspended 6”, 10”, 48” and 28” from the ceiling). The white cane detected 4.1 obstacles, whereas the device detected 7.3 on average. The LiDAR navigation system is 178% more effective at detecting objects comparatively. Visually impaired individuals no longer must rely on the white cane; rather, using this device, they can detect small, moving, and aerial objects at a much faster, and more accurate speed.
Synthesize Sodium Sesquicarbonate and Increase Yield
In order to recycle disposable diapers, we investigated the conditions where sodium sesquicarbonate (Chemical formula Na2CO3・ NaHCO3・ 2H2O hereinafter called sesqui) precipitates selectively from sodium carbonate and the conditions for high yield. For the selective precipitation of sesqui, we defined the time required for the reaction solution to pass through the sesqui precipitation area in the Na2CO3-NaHCO3-H2O phase diagram (45°C) as Δ t. As a result, we revealed that Δt is involved in the selective precipitation of sesqui, and that we can synthesize sesqui without the expensive addition of L-Arginine as used in a previous research. Also, we proposed the “Stay method”, in which the supply of CO2 is stopped for 30 minutes to the lengthen the Δ t, and found that we could synthesize sesqui selectively even under conditions in which sodium bicarbonate is likely to be precipitated as well. Regarding the high yield of sesqui, the yield was greatly improved by the common ion effect of Na by adding NaOH to the reaction solution, sesqui synthesis by repeated reactions with CO2, and sesqui recovery by adding the anti-solvent ethanol, reaching a sesqui conversion rate of 95%. This means 109 g of sesqui can be synthesized from 100 g of Na2CO3. Moreover, we confirmed that these synthesized samples have almost the same detergency as commercial sesqui. We did a test calculation to reveal the usefulness of this research. First, if diaper recycling technology is put into practical use and all used diaper waste in Saijo City can be recycled, a reduction of 534 t/year of used diaper waste can be expected. This corresponds to a 2.3% reduction in Saijo City's waste output. From the ash that would ultimately remain after being recycled, we expect up to 35.3 t/year of synthesized sesqui using our experimental method. In addition, a CO2 reduction of 8.2 t/year is possible in the process, which is about equivalent to the volume of one gymnasium.
Air quality monitoring project as an educational tool for sustainable development
The research project has an extremely relevant topic - the creation of an air quality monitoring system for general secondary education. In the context of the Covid 19 pandemic, proper air sanitation is a determining factor in counteracting the spread of coronavirus infection. Special requirements for the procedure of systematic ventilation of educational premises are set before teachers and technical staff of schools "Sanitary Regulations for General Secondary Education Institutions", which is mandatory for implementation in general secondary education institutions. Together with measures to counter the Covid 19 pandemic, the new health regulations somewhat neglect resource conservation and energy efficiency issues: ventilation during the heating season can lead to wasteful heat losses. Monitoring the quality of air purification is simply necessary if teachers and parents care about creating a safe educational environment for students at school. Requirements for air safety determine and regulate its characteristics such as temperature, humidity, the presence of dust particles of different sizes, the concentration of carbon dioxide (CO2), carbon monoxide (CO) and formaldehyde vapors. The level of hazardous substances such as formaldehyde, which can be released from building materials, carbon monoxide and carbon dioxide, should be closely monitored in accordance with the recommendations of sanitary regulations and hygiene requirements of health care facilities. With increased concentrations of carbon dioxide above normal, the human body will experience the negative effects of hypoxia: poor health, drowsiness, decreased cognitive processes, learning becomes less effective. Carbon monoxide is a poisonous substance that can damage the body, poison hemoglobin and cause constant hypoxia of all organs and systems, long stay indoors with it leads to death. Formaldehyde causes carcinogenic effects, and the excess concentration of dust particles worsens the condition of people with allergies and bronchial asthma, as well as dust promotes bacterial growth and the spread of viral particles, which is especially dangerous in a coronavirus pandemic. Our solution allows for a transparent permanent monitor of air quality in the school, makes this monitoring completely inclusive - because any user from among the participants in the educational process has access to up-to-date information about the air in the school and can make informed decisions about proper behavior Our system allows students to become more responsible, independent in terms of sanitary requirements and compliance. Therefore, the main idea of our project is extremely relevant today - to organize a digitalized system for monitoring the quality of air purification in the school, thus preventing inadequate ventilation with wasteful heat loss and reduced energy efficiency of the school building. The project has signs of sustainability - it is in line with the Sustainable Development Goals – 3 «Good health and well-being», 4 «Quality education», 5 «Gender equality», 11 «Sustainable cities and communities», 12 «Responsible consumption and production» and 13 «Climate action»
The effects of Different Synthesis Methods and Catalysts on Crude Aspirin
Aspirin is one of the most used and well-known medicines world-wide. It can be synthesized by reacting acetic anhydride and salicylic acid in a warm temperature of around 60-80°C. This reaction is usually catalyzed by sulfuric or phosphoric acid. This paper will investigate alternative catalysts, safer and more environmentally friendly, as well as compare different synthesis methods with different heat mediums, one using a water bath and the other amicrowave. By doing so, the effects of the catalyst and the method of synthesis on the yield, purity and environmental consequence of crude aspirin synthesis will be deduced. The targeted utcome is to find the alternative method as more energy efficient, and to find a greener safer catalyst to sulfuric and phosphoric acid. Further background information, exploration, and explanation is in the appendix. The targeted outcome will be to find a viable alternative catalyst that is safer and more environmentally friendly, and to find that the microwave synthesis method consumes less energy.
Reduction of traffic congestion in España Boulevard using graph theory
There have been numerous studies exploring the applications of graph theory in traffic management, often finding ways to reduce traffic congestion and make traveling more efficient. Such studies will be beneficial when applied to heavily congested areas such as España Boulevard, one of the busiest thoroughfares in Manila. This paper aimed tooptimize the road map of España Boulevard using graph theory. The current road map of España Boulevard was represented as a directed graphand subjected to the mutation method of edge removal, wherein an edge isremoved in each mutation based on a computed fitness function, F(G),which depicts better efficiency at lower values. Edges were removed until the graph got disconnected, which was tested using the Floyd-Warshall algorithm. The 28th mutation resulted in a minimum F(G) value of 144.4; this is a 50.18% decrease from the F(G) of the original graph, which is 290. After the 28th mutation, the removals resulted in an increase in the F(G). As a result, the final mutation resulted in an F(G) of 311.89, which characterized a less efficient graph. This study was able to apply graph theory concepts to optimize the España Boulevard road map using the mutation method, minimizing its F(G) by at most 50.18%. For future studies, the practicality of the alternate road map may be tested in simulations to examine its efficiency when other factors, such as traffic volume, are introduced.