Optimization of honey production by monitoring the behavior of bees based on studying their sounds
This is a first approach in the development of beekeeping and the preserving of bees, a crucial and important species in the balance of ecology on our planet. This project consists in designing and building a small affordable device that will help beekeepers keep an eye on their hives and prevent theft whenever and wherever they are by providing them with instant and continuous data and information about their beehive status through a mobile application. This IOT approach will rely on many physical variables especially the sound frequency of the bee buzz, which appears to be a way for the bees to communicate with each other in special circumstances. That is why; we aimed to analyze the sound frequencies of the bee buzz to detect beehive behavioral changes. Many other factors are also important for the keeping of a healthy beehive such us temperature, humidity, weight and fly activity. And as for security measures we are going to add a GPS tracker to the system to keep track of the hives and alert the beekeeper if there is any kind of danger. The development of this real time beehive monitoring system will not only help the beekeeper keep track of his hive and collect useful data but also increase the honey production and avoid many colony losses and thus preserve the bees and ensure their well-being.
Adversarial Attacks Against Detecting Bot Generated Text
With the introduction of the transformer architecture by Vaswani et al. (2017), contemporary Text Generation Models (TGMs) have shown incredible capabilities in generating neural text that, for humans, is nearly indistinguishable from human text (Radford et al., 2019; Zellers et al., 2019; Keskar et al., 2019). Although TGMs have many potential positive uses in writing, entertainment and software development (Solaiman et al., 2019), there is also a significant threat of these models being misused by malicious actors to generate fake news (Uchendu et al., 2020; Zellers et al., 2019), fake product reviews (Adelani et al., 2020), or extremist content (McGuffie & Newhouse, 2020). TGMs like GPT-2 generate text based on a given prompt, which limits the degree of control over the topic and sentiment of the neural text (Radford et al., 2019). However, other TGMs like GROVER and CTRL allow for greater control of the content and style of generated text, which increases its potential for misuse by malicious actors (Zellers et al., 2019; Keskar et al., 2019). Additionally, many state-of-the-art pre-trained TGMs are available freely online and can be deployed by low-skilled individuals with minimal resources (Solaiman et al., 2019). There is therefore an immediate and substantial need to develop methods that can detect misuse of TGMs on vulnerable platforms like social media or e-commerce websites. Several methods have been explored in detecting neural text. Gehrmann et al. (2019) developed the GLTR tool which highlights distributional differences in GPT-2 generated text and human text, and assists humans in identifying a piece of neural text. The other approach is to formulate the problem as a classification task to distinguish between neural text and human text and train a classifier model (henceforth a ‘detector’). Simple linear classifiers on TF-IDF vectors or topology of attention maps have also achieved moderate performance (Solaiman et al., 2019; Kushnareva et al., 2021). Zellers et al. (2019) propose a detector of GROVER generated text based on a linear classifier on top of the GROVER model and argue that the best TGMs are also the best detectors. However, later results by Uchendu et al. (2020) and Solaiman et al. (2019) show that this claim does not hold true for all TGMs. Consistent through most research thus far is that fine-tuning the BERT or RoBERTa language model for the detection task achieves state-of-the-art performance (Radford et al., 2019; Uchendu et al., 2020; Adelani et al., 2020; Fagni et al., 2021). I will therefore be focussing on attacks against a fine-tuned RoBERTa model. Although extensive research has been conducted on detecting generated text, there is a significant lack of research in adversarial attacks against such detectors (Jawahar et al., 2020). However, the present research that does exist preliminarily suggests that neural text detectors are not robust, meaning that the output can change drastically even for small changes in the text input and thus that these detectors are vulnerable to adversarial attacks (Wolff, 2020). In this paper, I extend on Wolff’s (2020) work on adversarial attacks on neural text detectors by proposing a series of attacks designed to counter detectors as well as an algorithm to optimally select for these attacks without compromising on the fluency of generated text. I do this with reference to a fine-tuned RoBERTa detector and on two datasets: (1) the GPT-2 WebText dataset (Radford et al., 2019) and (2) the Tweepfake dataset (Fagni et al., 2021). Additionally, I experiment with possible defences against these attacks, including (1) using count-based features, (2) stylometric features and (3) adversarial training.
Designing a LiDAR topographic navigation system: A novel approach to aid the visually impaired
The WHO reports 2.2 billion people internationally have a form of visual impairment, with Perkins School of Blind adding that 4 to 8 percent (8.8 - 17.6 million people) solely rely on a white cane for navigation. In an interview by Stephen Yin for NPR, visually impaired interviewees claimed that a white cane was ineffective as it failed to detect moving obstacles (ex. bikes), aerial obstacles (ex. falling objects), and it became physically demanding after a prolonged period. This problem can be solved with a headset that integrates LiDAR technology and haptic feedback to provide a real-time assessment of their environment. Theoretically, the device will determine how far an object is from the user and place it into one of three conditionals based on distance (0- 290mm, 310-500mm, 510-1200mm). As the user gets closer to the object, the haptic will vibrate more frequently. The device has 11 LIDAR sensors, beetle processors, and ERM motors so that when the LiDAR detects an object, the device will send a haptic signal in that area. It not only identifies the existence of an object but it tells the user its relative position with a latency period of approximately 2 milliseconds. When testing the device, a simulated walking environment was made. Ten obstacles were included: five below the waist (72”, 28”, 35” and 8.5” tall sticks) and five above the waist (paper suspended 6”, 10”, 48” and 28” from the ceiling). The white cane detected 4.1 obstacles, whereas the device detected 7.3 on average. The LiDAR navigation system is 178% more effective at detecting objects comparatively. Visually impaired individuals no longer must rely on the white cane; rather, using this device, they can detect small, moving, and aerial objects at a much faster, and more accurate speed.
朽木生花-初探以中藥萃取液對木材染色之防蟲抑菌效果
In our experiment, we used traditional Chinese medicine to dye on cheap wood, in addition to avoiding the impact of chemical paint on human body; After dyeing, the color and texture quality of the wood are improved, which makes cheap wood have higher price and improves the value of wood; At the same time, it can reduce the felling of slow growing precious wood, which has the functions of environmental protection, earth love and carbon saving. The test material was pretreated with hydrogen peroxide and surfactant, and the bleaching effect was obvious. After dyed with different Chinese medicinal, soak in strong acid and alkali solution for 15 minutes, which shows that strong acid and acid treatment is not allowed. On the other hand, after 15 minutes of immersion in detergent, the color difference value is less than 2, and the rubbing fastness is above grade 4. In the bacteriostasis experiment, no fungus grew in the first 3 days, and it did not grow in the 12th day. In the anti-termite experiment, the mortality rate on the fifth day was 65% for Lithospermum and 83.8% for Wolfberry, and the other groups had a good effect of total elimination. While plastic products have a great impact on the environment, wood that is dyed or modified with natural colored dye, its environmental value far exceeds the human visual perception.