SUSTUNI - SOFTWARE FOR SMART AND SUSTAINABLE DESIGN OF INDUSTRIAL ELECTRICAL CIRCUITS
The theme of this project is to develop software to facilitate and innovate the design of low-voltage industrial electrical circuits. The goal is to develop a program that makes projects more efficient in terms of time, accuracy, and sustainability, automating dimensions such as calculating conductor cross-sections, protections, single-line diagrams, and analyzing with AI at which points industrial electrical circuits can be more sustainable. The 2023 Electric Energy Yearbook of the Energy Research Company describes that electricity consumption increases 2% per year in Brazil, and industrial installations represent the largest part of the national electrical sector (36.2%). As stated in standard NBR 5410/2004, when developing an installation project, an electrical professional works with several processes, depending on several criteria and calculations to present a reliable electrical installation. Minimal errors in calculations can cause damage to equipment, conductors, and individuals present in the installation. Using software to model these circuits optimizes time and brings more confidence to the project. This work aims to differentiate itself in this field by filling in the gaps in existing solutions for the industry, providing support for Brazilian standards, automatically generating single-line diagrams and presenting suggestions for sustainability in the circuits. The program is developed in Python, based on NBR 5410/2004 and engineering works. The software developed allows the user to size different distribution boards, motors and circuits, calculating the cross-section of the conductors/electrical protections, a particular transformer, and generating a single-line diagram in CAD. The program also presents suggestions aimed at sustainability to reduce material/energy costs. Tests were carried out with electrical engineering companies and students in the technical area, where the software presented high precision and very positive feedback from the interviewees, and it can be said that the work achieved its objectives.
The Future of Carbon Capture Technology: A Novel Moisture Powered Thin-Film Supercapacitor that Adsorbs Carbon Dioxide
Carbon capture and storage technology (CCS) has tremendous potential to enable the use of fossil fuels while reducing the emissions of CO2 into the atmosphere, and consequently combating climate change. CCS faces several challenges such as energy consumption, cost, low practical applications and environmentally friendliness. This research presents the first carbon capture device capable of capturing CO2 while generating green energy. By integrating advanced materials science with sustainable energy principles, the device addresses the dual challenges of CO2 mitigation and renewable energy production in a single, cost-effective platform. Beyond its technical innovations, this research highlights the device’s scalability and potential to revolutionize carbon capture deployment. The device can be integrated into industrial emissions systems, transportation systems, urban infrastructure, or even wearable technologies, providing versatile applications across different sectors. Furthermore, the device’s lightweight and flexible form factor ensures accessibility as it improves the applicability of CCS technology in remote or developing regions. This study demonstrated a novel approach to carbon capture by implementing carbon capture into a thin-film moisture electricity generator. The developed thin-film supercapacitor successfully demonstrated the capacity for supercapacitive swing adsorption of CO2, which is a relatively novel approach to CCS that is cheap, environmentally friendly, and efficient while generating green energy from ambient humidity.
Development and Comparison of a Small-Scale Toroidal Horizontal-Axis Wind Turbine to a Conventional HAWT Design
Wind energy is one of the most promising and rapidly growing sources of renewable energy, although maximizing its efficiency while minimizing noise remains a challenge and limits its widespread adoption. The emergence of toroidal propellers, which have gained popularity for producing comparable thrust levels to traditional drone propellers while producing less noise, could mitigate this. This study aimed to develop a small-scale toroidal HAWT and compare its power and noise output to a conventional rotor design under similar wind velocity conditions. 15-centimeter diameter models of the toroidal and conventional rotors were created in Fusion 360 and simulated using Ansys Fluent to identify the significant aerodynamic characteristics that positively affect the blades’ power coefficient. The toroidal design with the greatest simulated power output at low tip speed ratios (TSRs) was then 3D printed and physically tested in a wind tunnel against the control rotor. The experimental results confirmed that the toroidal design had greater power coefficients at lower TSRs compared to the control rotor. The toroidal rotor started operating at a wind velocity of 3 m/s compared to the control rotor’s 6 m/s, which indicates superior start-up characteristics. While the toroidal rotor produced half the power output of the control at the highest tested wind speed of 7 m/s, it emitted 18 decibels less noise and showed a reduction in discernible noise between frequencies of two to five kilohertz. The results from this study show its potential in low-noise wind turbines within low-wind velocity environments.
THIRD-LIFE: Real Life Accident Alerting, Live Locations and Notifications to Emergency Service
The country of Nepal, although beautiful, is facing many challenges due to its geography, lying between the towering Himalayas and the vast plains of Terai. The narrow mountain roads, prone to landslides and poor infrastructure, often result in frequent accidents. This situation is worsened by the delayed emergency response, as accidents are often reported much later than the time they occur. In the past ten years, over 15 major bus accidents have killed hundreds of people, and in 2024 alone, more than 80 deaths were reported. In response, the "Third Life" project was developed to improve emergency response time and save lives.The project has two main components: first, a device equipped with GSM (Global System for Mobile Communications), a GPS module (Global Positioning System), a gyroscopic sensor, and a microcontroller to detect accidents in real-time within seconds of the incident. Second, once an accident is detected, live coordinates are sent directly to emergency services and police stations for immediate assistance.This project is not only vital for Nepal but also for countries with similar terrain and infrastructure challenges. The "Third Life" project aims to save many lives that are lost due to delayed reporting, ensuring quicker emergency responses.A tragic example of this was the 2024 Trishuli bus accident, where many lives were lost when the bus plunged into the river. To date, the bus has not been recovered. Our project aims to create a waterproof device that, when connected to a satellite, will send live coordinates to emergency services, ensuring 100% reliability. This device could help locate the bus, which is still missing, within seconds.Ultimately, this initiative offers more than just safety it restores peace of mind and hope for the families of victims, providing them with a chance for a better future despite the tragedy.