全國中小學科展

工程學

以智慧型高親水薄膜提升汗液感測靈敏度 Enhancing Sweat Sensing Sensitivity with SmartHydrophilic Thin Films

本研究主要是以晶片和織布進行結合,以電極收集訊號分析受測者的鈉濃度和汗液流量,研發長期保持潤濕和擁有穩定性的高親水性薄膜Polyacrylic acid / Cellulose nanocrystals(PAA / CNC)感測器。製備不同濃度比例的PAA / CNC光固化水凝膠,進行接觸角、FTIR圖譜、溶脹比 (Swelling Ratio)、SEM、EIS 潤濕面積分析並比較選擇出PAA /10 CNC的濃度比例作為最佳的汗液感測電極。利用CNC與PET片間貼合度強化結果,能有效提升薄膜親水性,降低電極與織布中的親疏水性差異,加強電極感測靈敏度,相較於對照組,電容值結果顯示約提升5~10倍的靈敏度。本研究開發一個靈敏且穩定即時監測汗液的薄膜,並結合藍芽應用於智慧裝置。

開發影像辨識系統應用於離岸流偵測預警

離岸流是海灘安全的重大隱患,台灣有30處海岸經衛星拍攝到離岸流。其發生時間和地點不定,且會迅速將人帶離岸邊,最遠約100公尺。民眾常因掙扎而體力不支,導致溺斃。為減少此類事故,本研究開發了一套離岸流偵測預警系統,構建出準確度超過95%的辨識模型。 因台灣無離岸流圖庫,本研究除國外圖庫,也加入台灣GoOcean等平台的即時影像,以貼合台灣實際狀況。經影像前處理後,共約四萬張圖片和五十部影片用於訓練YOLO v8模型。當偵測到離岸流,即時透過Discord發送警報至救難中心。我們也加入人形辨識功能,若系統同時偵測到人與離岸流,則加強警戒等級,從而提升救援效率。 完成離岸流辨識系統後,我們著手開發預警功能。將辨識模型應用於各地監視器,蒐集更多離岸流資料,再先後使用YOLO v8和Transformer提取生成特徵,預測其發生,以達成預警的功能。

應用多任務學習神經網路建構可識譜六孔竹笛機器人

本研究目標在建構可以識譜及吹奏中國笛的吹笛機器人。中國笛演奏必須協調吹法及指法;藉由控制吹氣流速、吹嘴角度及六指按壓音孔的變化來控制音高以完美地吹奏樂曲,是一項複雜的演奏技術。機器人以模擬吹笛口型的吹嘴,搭配兩個風箱往復送氣到一個壓力調節風箱送氣,以微控制板控制六個機械手指來蓋放完成演奏,為在音尾可確實止氣,設計一個風門,利用風門開闔也可模仿吐音技巧讓笛聲明確發音。辨識樂譜方面收集樂譜樣本,樣本分成譜線、音符、節奏三套,透過多任務學習MTL的深度學習架構進行訓練,建構可以辨識五線四間上下三線及全音符到16分音符及休止符的樂譜辨識模型。經測試若樂譜在符合音域範圍內,可以完整的辨識,轉換成音符資料傳送給吹笛機器人吹奏。

數位物理實驗室:毫米波雷達系統之設計與應用

本研究旨在設計基於毫米波雷達的數位物理實驗系統,用於精確量化彈簧簡諧運動。傳統物理實驗易受肉眼觀察與手動測量的誤差影響,本系統利用24GHz毫米波雷達結合自製電路板,進行即時、無接觸的運動測量。透過設計電路板、撰寫韌體訊號轉換程式,並進行數位數據分析,成功開發了靈敏的毫米波雷達系統。我們利用彈簧簡諧運動實驗驗證了該系統,觀察不同質量砝碼對彈簧運動頻率的影響。實驗結果顯示,考慮彈簧質量後,測量數據與理論結果的均方根誤差從0.62Hz降低至0.35Hz,顯示出系統的高度精確性及穩定性。本研究成功解決了傳統實驗中的量測誤差問題,以毫米波雷達技術實現了精確觀測。開源設計有助於推廣至學校的物理實驗室,為學生提供先進的實驗工具與數據分析經驗。這展示了毫米波雷達在物理實驗中的應用潛力,並為未來教學實驗提供了高效、低成本的解決方案。

SUSTUNI - SOFTWARE FOR SMART AND SUSTAINABLE DESIGN OF INDUSTRIAL ELECTRICAL CIRCUITS

The theme of this project is to develop software to facilitate and innovate the design of low-voltage industrial electrical circuits. The goal is to develop a program that makes projects more efficient in terms of time, accuracy, and sustainability, automating dimensions such as calculating conductor cross-sections, protections, single-line diagrams, and analyzing with AI at which points industrial electrical circuits can be more sustainable. The 2023 Electric Energy Yearbook of the Energy Research Company describes that electricity consumption increases 2% per year in Brazil, and industrial installations represent the largest part of the national electrical sector (36.2%). As stated in standard NBR 5410/2004, when developing an installation project, an electrical professional works with several processes, depending on several criteria and calculations to present a reliable electrical installation. Minimal errors in calculations can cause damage to equipment, conductors, and individuals present in the installation. Using software to model these circuits optimizes time and brings more confidence to the project. This work aims to differentiate itself in this field by filling in the gaps in existing solutions for the industry, providing support for Brazilian standards, automatically generating single-line diagrams and presenting suggestions for sustainability in the circuits. The program is developed in Python, based on NBR 5410/2004 and engineering works. The software developed allows the user to size different distribution boards, motors and circuits, calculating the cross-section of the conductors/electrical protections, a particular transformer, and generating a single-line diagram in CAD. The program also presents suggestions aimed at sustainability to reduce material/energy costs. Tests were carried out with electrical engineering companies and students in the technical area, where the software presented high precision and very positive feedback from the interviewees, and it can be said that the work achieved its objectives.

The Future of Carbon Capture Technology: A Novel Moisture Powered Thin-Film Supercapacitor that Adsorbs Carbon Dioxide

Carbon capture and storage technology (CCS) has tremendous potential to enable the use of fossil fuels while reducing the emissions of CO2 into the atmosphere, and consequently combating climate change. CCS faces several challenges such as energy consumption, cost, low practical applications and environmentally friendliness. This research presents the first carbon capture device capable of capturing CO2 while generating green energy. By integrating advanced materials science with sustainable energy principles, the device addresses the dual challenges of CO2 mitigation and renewable energy production in a single, cost-effective platform. Beyond its technical innovations, this research highlights the device’s scalability and potential to revolutionize carbon capture deployment. The device can be integrated into industrial emissions systems, transportation systems, urban infrastructure, or even wearable technologies, providing versatile applications across different sectors. Furthermore, the device’s lightweight and flexible form factor ensures accessibility as it improves the applicability of CCS technology in remote or developing regions. This study demonstrated a novel approach to carbon capture by implementing carbon capture into a thin-film moisture electricity generator. The developed thin-film supercapacitor successfully demonstrated the capacity for supercapacitive swing adsorption of CO2, which is a relatively novel approach to CCS that is cheap, environmentally friendly, and efficient while generating green energy from ambient humidity.

Development and Comparison of a Small-Scale Toroidal Horizontal-Axis Wind Turbine to a Conventional HAWT Design

Wind energy is one of the most promising and rapidly growing sources of renewable energy, although maximizing its efficiency while minimizing noise remains a challenge and limits its widespread adoption. The emergence of toroidal propellers, which have gained popularity for producing comparable thrust levels to traditional drone propellers while producing less noise, could mitigate this. This study aimed to develop a small-scale toroidal HAWT and compare its power and noise output to a conventional rotor design under similar wind velocity conditions. 15-centimeter diameter models of the toroidal and conventional rotors were created in Fusion 360 and simulated using Ansys Fluent to identify the significant aerodynamic characteristics that positively affect the blades’ power coefficient. The toroidal design with the greatest simulated power output at low tip speed ratios (TSRs) was then 3D printed and physically tested in a wind tunnel against the control rotor. The experimental results confirmed that the toroidal design had greater power coefficients at lower TSRs compared to the control rotor. The toroidal rotor started operating at a wind velocity of 3 m/s compared to the control rotor’s 6 m/s, which indicates superior start-up characteristics. While the toroidal rotor produced half the power output of the control at the highest tested wind speed of 7 m/s, it emitted 18 decibels less noise and showed a reduction in discernible noise between frequencies of two to five kilohertz. The results from this study show its potential in low-noise wind turbines within low-wind velocity environments.

區域水流流場3D重建系統的探討與應用 Discussion and Application of 3D Reconstruction System for Regional Water Flow Fields

本研究透過JY61P六軸加速度陀螺儀與ESP-32S控制板,製作出球形水流流場監測模組,藉由Unity 3D軟體與C#程式編寫,擬合出水域的水流狀況,再搭配空拍圖與水域深度探測,進行水域模型的建立。在沙崙海水浴場水流模型,發現當水流由西南方進入模型時沿岸流會順著海岸線流入鳥喙地形,與本研究模擬出的水流流場相符,確認所設計之區域水流流場3D重建系統的可行性與準確性。若將水流流場監測模組連接GPS浮標,可方便回收監測模組並輔助水流流場監測,能探測更深、更廣的未知水域流場。 本研究建立的區域水流流場3D重建系統,可廣泛應用在未知水域的模型建立,發揮預警功能。在青山瀑布水流流場監測實驗中,發現在瀑布水潭中,不同的深度有不同的水流差異產生;且在不同位置可能會有斷層式的地形高低變化,因此在未知水域活動時,應注意水域環境狀況以確保自身安全。

Sound Direction Assist Device for Patients with Single-Sided Deafness Caused by Acoustic Neuroma

本研究專為因聽覺神經腫瘤手術造成單側聽力喪失(Single-Sided Deafness, SSD)的聽損患者設計了一款辨別聲音方位的輔助裝置。SSD患者因為有一側的聽力完全喪失,因此現有的助聽器無法提供有效的協助。 本研究採納各式麥克風電路的優點,設計出一款麥克風模組來接收聲音。並藉由帽子周圍的六個麥克風模組形成陣列。利用頭影效應所帶來的差異,運算出聲音的方位,並且透過馬達震動來提醒使用者聲音的方位。本作品延續並參考了之前的作品[一] [二]並經過改良,經過實驗後發現,本裝置可以偵測到以使用者為圓心半徑23公尺左右、76分貝的聲音,偵測距離約為之前作品的2.3倍,可以為使用者提供3到6秒的反應時間。希望可以藉由這種方式,讓SSD的聽損患者更安心地走在路上。

THIRD-LIFE: Real Life Accident Alerting, Live Locations and Notifications to Emergency Service

The country of Nepal, although beautiful, is facing many challenges due to its geography, lying between the towering Himalayas and the vast plains of Terai. The narrow mountain roads, prone to landslides and poor infrastructure, often result in frequent accidents. This situation is worsened by the delayed emergency response, as accidents are often reported much later than the time they occur. In the past ten years, over 15 major bus accidents have killed hundreds of people, and in 2024 alone, more than 80 deaths were reported. In response, the "Third Life" project was developed to improve emergency response time and save lives.The project has two main components: first, a device equipped with GSM (Global System for Mobile Communications), a GPS module (Global Positioning System), a gyroscopic sensor, and a microcontroller to detect accidents in real-time within seconds of the incident. Second, once an accident is detected, live coordinates are sent directly to emergency services and police stations for immediate assistance.This project is not only vital for Nepal but also for countries with similar terrain and infrastructure challenges. The "Third Life" project aims to save many lives that are lost due to delayed reporting, ensuring quicker emergency responses.A tragic example of this was the 2024 Trishuli bus accident, where many lives were lost when the bus plunged into the river. To date, the bus has not been recovered. Our project aims to create a waterproof device that, when connected to a satellite, will send live coordinates to emergency services, ensuring 100% reliability. This device could help locate the bus, which is still missing, within seconds.Ultimately, this initiative offers more than just safety it restores peace of mind and hope for the families of victims, providing them with a chance for a better future despite the tragedy.