全國中小學科展

工程學

碳紙 / 聚乙二醇複合材料應用於太陽蒸發器及抗鹽之研究

本研究旨在開發一款新型薄膜,利用創新的光熱薄膜蒸餾技術進行海水淡化。薄膜的製作是利用碳紙浸泡於不同濃度的聚乙烯醇(PVA)溶液中,形成一面疏水、一面親水的雙性薄膜。通過實驗比較各種薄膜的通量、鹽回溶、光熱效應等性能差異,從中找出最優的製膜方式,以提升該技術的可行性和效率。研究目標是增加淡水產量,同時減少能源消耗和成本負擔。此項技術符合聯合國可持續發展目標(SDGs)中的第6項(清潔水和衛生)與第7項(可負擔且清潔的能源)。本研究最終希望推動這項技術的廣泛應用,進一步走入市場,為水資源的永續發展做出貢獻。

以廢棄香灰與陶瓷3D列印製成磚瓦於改善環境酸雨與碳捕捉應用功效之研究The Study of the Utilization of Waste Ash for Ceramic 3D Printing Bricks to Improve Acid Rain Issues and Carbon Capture Applications

廢棄香灰處理不易且對環境具危害經定性分析知有 47.74% 鹼性物質 CaO。本研究以廢棄香灰製成屋瓦及地磚,探討與酸雨酸鹼中和之可行性,經歷一年多且進行多次屋瓦逕流及浸泡酸雨實驗,觀察到香灰試片與酸雨中和效率和內含香灰比例呈現正相關,結果顯示摻入5%~20%香灰所製成的屋瓦的酸鹼中和能力皆適合臺灣環境使用且經一年放置於自然環境實驗仍具有良好的酸雨中和能力;若欲同時具有酸雨酸鹼中和與碳捕捉能力,則以含 10%~20%香灰為佳。摻入超過 20%香灰製品則降低陶製品之黏性導致無法成型。香灰製品相較於傳統屋瓦有製程價格低、高耐用性和酸鹼中和效率高等特性,可作為屋瓦材料或地磚的新發展。製作地磚部分因水泥會包覆香灰陶粒,因此採孔洞較大的陶瓷摻雜香灰進行 3D 列印,可快速製作不同環境應用之地磚,亦可同時具有碳捕捉與酸雨酸鹼中和之功效。

光控生產不同硬度之蛋白質電紡絲生醫材料

隨著大數據與人工智慧的發展,新藥的研發周期大幅縮短,模擬體內微環境的體外細胞培養平台能降低動物試驗成本,滿足快速提供新藥檢測資訊的需求。本實驗開發一種以膠原蛋白衍生物建構的支架型三維細胞培養平台,以貼近體內環境為目標。我們以甲基丙烯酸酐化明膠(Gelatin Methacryloyl, GelMA)的電紡絲奈米級纖維製作支架,藉由不同紫外光照時間,調整支架軟硬度,觀察 NIH3T3 培養於支架上的細胞形態變化。材料拉伸試驗顯示在照光3分鐘(光能量2.88焦耳) 和照光 25 分鐘(光能量 23.96 焦耳)條件下,分別可得到楊氏模量 293kPa 及 1035 kPa,能在硬度上近似人體血管和皮膚。

Fabrication of Highly Efficient and Cost-effective Tandem Dye-sensitized Solar Cells for Building Integrated Photovoltaics

In recent years, there has been an extreme rise in population and economic development, which requires a great demand for energy worldwide. Global energy consumption has been increasing nearly every year for over half a century [1]; it is rapidly rising in the form of nonrenewable energy, such as coal, oil, natural gas, and fossil fuel. Fossil fuel overreliance has resulted in a dramatic rise in atmospheric carbon dioxide (CO2) concentrations.

非對稱反摺溝槽陣列過熱表面之液滴自推性能及冷卻效率

工業中時常會運用噴霧冷卻,以液滴的潛熱變化冷卻高溫表面。因此為了提升高溫噴霧冷卻的效率,本研究基於過往文獻與(Hsu, 2023)共同研究微奈米結構表面ARG上液滴的碰撞運動,並由實驗推論高溫表面蒸氣層和氣泡推力的作用。接著由單一液滴碰撞實驗推導實驗和理論受力模型並進行比較。最後進行單一液滴冷卻實驗並推論連續液滴冷卻實驗結果。本研究發現ARG表面的各運動特性均優於文獻,且利用液滴的受力更全面地了解液滴運動和冷卻效率的關係,更在最後驗證其冷卻效率優於對照組,並發想探討連續液滴冷卻的實驗方法,以更貼合工業上實際的噴霧冷卻。經過此研究,ARG表面能夠實際應用於工業上高溫表面的噴霧冷卻。

基於LS1043A多核處理器之嵌入式系統開機速度之精準計時方案

電子智能系統被廣泛應用在現代人的日常生活中,但是使用任何電子系統都必須面對系統失效的風險,就像我使用電腦可能會當機一樣。在智能車輛的應用中,電子系統的可靠性與我們的人身安全直接相關。一旦發生系統失效的狀況,恢復系統正常運行的最後一個手段是重新啟動系統,藉由系統重啟來恢復系統的正常功能。因此系統重啟的耗時,對系統的可靠性至為重要。 LS1043A晶片是多核心高階處理器,能夠運行完整的Linux操作系統。由於LS1043A架構及功能的複雜性,它的開機程序需要遵守嚴格的步驟,耗時也比一般的微控制器更長。在這個實驗中,我將了解LS1043A處理器的架構著手,由此設計一個計時器,能做到精準量測開機時間達千分之一秒,使開機時間成為能夠量化的指標。本實驗的計時方案是一個通用的設計概念,可用來量測不同類型高階處理器的開機耗時及系統可靠性評估之參考指標。

Electrical Characterization of MoS2 Field-Effect Transistors at Cryogenic Temperatures

隨著矽基電晶體逐漸微縮,其元件效能將接近其物理極限,二硫化鉬 (MoS2) 等二維材料藉著其獨特的特性(如寬的能隙、高電流開關比及優異的載子遷移率等),可作爲矽的替代材料用於未來的電子科技應用。本研究旨在製造MoS₂ 的場效電晶體並研究元件之低溫特性。我們成功利用機械剝離法製備並轉移二維 MoS2薄膜至二氧化矽/矽基板上,並且製造MoS₂ 場效電晶體,並量測其室溫(300 K)至極低溫(~ 4 K)的電流特性,元件在此溫度範圍中具有優異的特性,能有效地調控電流調控,表現出良好的下閘極控制能力,同時具有低次臨界擺幅及高電流開關比(~ 106)。在極低的溫度(4 K)下,該電晶體仍能保持良好的運作,顯示出MoS₂應用於低功耗且高元件效能的低溫電子元件的潛力。

以智慧型高親水薄膜提升汗液感測靈敏度 Enhancing Sweat Sensing Sensitivity with SmartHydrophilic Thin Films

本研究主要是以晶片和織布進行結合,以電極收集訊號分析受測者的鈉濃度和汗液流量,研發長期保持潤濕和擁有穩定性的高親水性薄膜Polyacrylic acid / Cellulose nanocrystals(PAA / CNC)感測器。製備不同濃度比例的PAA / CNC光固化水凝膠,進行接觸角、FTIR圖譜、溶脹比 (Swelling Ratio)、SEM、EIS 潤濕面積分析並比較選擇出PAA /10 CNC的濃度比例作為最佳的汗液感測電極。利用CNC與PET片間貼合度強化結果,能有效提升薄膜親水性,降低電極與織布中的親疏水性差異,加強電極感測靈敏度,相較於對照組,電容值結果顯示約提升5~10倍的靈敏度。本研究開發一個靈敏且穩定即時監測汗液的薄膜,並結合藍芽應用於智慧裝置。

利用體外測試方法探討生醫水凝膠與材料表面附著性質之關聯 Investigation of the relationship between biomedical hydrogels and surface adhesion properties using in vitro testing methods

醫療級水凝膠在注入人體後容易因運動行為而產生位移,因此需要體外測試方法來評估水凝膠的附著性,以製備適合不同部位使用的水凝膠。本研究設計兩種測試方法來模擬水凝膠在人體的斜角流動狀態和旋轉流動狀態的位移,藉此推斷水凝膠施打入體內後的變化。本研究採用兩種不同黏性的水凝膠和不同粗糙度表面如人工皮、陶瓷和金屬來模擬人體部位的接觸面,探討水凝膠的附著性質。斜角流動測試下,黏性高的水凝膠在陶瓷和金屬 30°、45°及90°的斜角下幾乎不會流動,黏性低的水凝膠則會隨著角度的增加而流速加快。陶瓷粗糙度最高,水凝膠在其表面上附著性質較強。旋轉流動測試下,高黏性的水凝膠在模擬跑步時都具穩定性,而低黏性則只適用於較穩定的步行狀況。體外測試方法能區分不同黏性水凝膠的附著性質,說明此方法可作為篩選適用的水凝膠的依據。

攜帶型高效率氫能離子能雙輸出埠電力裝置 Dual-ports high hydrogen and ionic conversion efficient power generator

本研究以空氣為催化劑,降低KOH在水中解離成K+及OH- 的解離能,大幅提升KOH在水中解離的效率,配合以鋁板為電極,還原H2O及OH-,釋出氫氣H2。這還原反應過程同時輸出K+及H2為電力能源。利用解離出的K+組裝成鉀離子電池,同時以解離出的氫氣運作燃料電池,組成雙輸出埠電力裝置。本雙輸出埠電力裝置,可以分別利用KOH濃度及或空氣輸入量,來調控輸出功率。KOH濃度增加或空氣輸入量增加,均可提高兩輸出埠的功率。測試時採用KOH濃度為5M,輸出電壓達0.19 mV,電流達0.166 mA。採用摻雜0.3%鉍的鋁為電極板,提升輸出電壓達0.67 mV,電流達0.199 mA。在鉀離子電池2MKOH水溶液中串聯4組電極板,電壓提升至2.9 V,電流達5A,並能成功點亮LED燈及驅動市售燃料電池。再經電路板穩壓後,電壓從2.9 V提升至5 V,適合USB充電,顯示出其作為無碳排放電力能源。