The Future of Carbon Capture Technology: A Novel Moisture Powered Thin-Film Supercapacitor that Adsorbs Carbon Dioxide
Carbon capture and storage technology (CCS) has tremendous potential to enable the use of fossil fuels while reducing the emissions of CO2 into the atmosphere, and consequently combating climate change. CCS faces several challenges such as energy consumption, cost, low practical applications and environmentally friendliness. This research presents the first carbon capture device capable of capturing CO2 while generating green energy. By integrating advanced materials science with sustainable energy principles, the device addresses the dual challenges of CO2 mitigation and renewable energy production in a single, cost-effective platform. Beyond its technical innovations, this research highlights the device’s scalability and potential to revolutionize carbon capture deployment. The device can be integrated into industrial emissions systems, transportation systems, urban infrastructure, or even wearable technologies, providing versatile applications across different sectors. Furthermore, the device’s lightweight and flexible form factor ensures accessibility as it improves the applicability of CCS technology in remote or developing regions. This study demonstrated a novel approach to carbon capture by implementing carbon capture into a thin-film moisture electricity generator. The developed thin-film supercapacitor successfully demonstrated the capacity for supercapacitive swing adsorption of CO2, which is a relatively novel approach to CCS that is cheap, environmentally friendly, and efficient while generating green energy from ambient humidity.
Development and Comparison of a Small-Scale Toroidal Horizontal-Axis Wind Turbine to a Conventional HAWT Design
Wind energy is one of the most promising and rapidly growing sources of renewable energy, although maximizing its efficiency while minimizing noise remains a challenge and limits its widespread adoption. The emergence of toroidal propellers, which have gained popularity for producing comparable thrust levels to traditional drone propellers while producing less noise, could mitigate this. This study aimed to develop a small-scale toroidal HAWT and compare its power and noise output to a conventional rotor design under similar wind velocity conditions. 15-centimeter diameter models of the toroidal and conventional rotors were created in Fusion 360 and simulated using Ansys Fluent to identify the significant aerodynamic characteristics that positively affect the blades’ power coefficient. The toroidal design with the greatest simulated power output at low tip speed ratios (TSRs) was then 3D printed and physically tested in a wind tunnel against the control rotor. The experimental results confirmed that the toroidal design had greater power coefficients at lower TSRs compared to the control rotor. The toroidal rotor started operating at a wind velocity of 3 m/s compared to the control rotor’s 6 m/s, which indicates superior start-up characteristics. While the toroidal rotor produced half the power output of the control at the highest tested wind speed of 7 m/s, it emitted 18 decibels less noise and showed a reduction in discernible noise between frequencies of two to five kilohertz. The results from this study show its potential in low-noise wind turbines within low-wind velocity environments.