A Study on Hybrid Electromechanical Actuators
An actuator [7,22,28,29] is a motion control mechanism. Depending on the type of actuator, it can convert one type of energy (e.g. chemical, electromagnetic, thermal) into mechanical energy. The field that laid the foundations for the realization of actuators is the field of electromechanics, whose evolution was common with that of actuators. Thus, a periodization of the electromechanics paradigm includes 3 major stages [7,6,25,28,29]: I.1830-1950 Old electromechanics. It is the period when the development of electric cars is significant, which imposed the appearance of classical or primary electromechanical drives. It was a generous nineteenth century, dominated by the scientific results of the triumvirate: Michel Faraday (initiator of fundamental empirical experiments in the history of electricity; the law of induction, of the principle of electric motor, of the magnetic circuit, initiator of electro-chemistry), James Clerk Maxwell, (the genius theorist who put into mathematical form the equations of electric and magnetic fields, as well as the connection between them), and Werner Siemens (engineer and capitalist genius manager who managed to exploit and validate the relationship research-technology-economic development), triumvirate that can be disputed in the sense that other scientists also made outstanding contributions to the history of electricity: Edison, Ampere, Ohm (to name but a few who do not exhaust a significant list). Industrial production of electric machines also appeared and the first signs that will announce the emergence of electromechanical actuators as a basis for military applications. II.1950-1970, Traditional electromechanics, in which electrical power drives appear, a theoretical and experimental development on the emergence of new material and electromechanical principles. Much military research (such as missile control or ship and torpedo control) influences and produces the transfer of applications in ordinary life, including the actuator subfield. III. 1970-2020, Avant-garde electromechanics, representing according to Thomas Kuhn's theory, a paradigm forcing [30]. It is worth noting the contributions of the new scientific revolution. - Specific technologies of miniaturization, by material deposition. - Elastomeric polymeric materials with the help of which it was possible to make electrostrictive actuators, - Very special means of investigation, mainly the development of microscopy, - Gradient of applications in the field of medical engineering, with outstanding contributions both in investigation and microsurgery, applications of actuators in biological micropumps, etc. [25,27,28,29].
A Humanoid Robot on the Basis of Modules Controlled Through a Serial Half-Duplex UART Bus
This thesis presents the design and construction of a small-scale humanoid robot, covering all aspects from 3D modeling to electronics design and programming. The robot is built entirely from custom 3D-printed components, with a new servomotor developed specifically to meet the project’s requirements. During the robot’s development, custom electronics were also designed, leading to a modular platform that enables easy interaction with diverse modules like servomotors and inertial measurement unit (IMU) modules. This modular approach allows these components to be programmed and controlled with minimal adjustments, as well as making development of potential future modules straightforward. The robot is operated via a computer application that includes a graphical user interface for displaying real-time data from the robot.