全國中小學科展

工程學

旋葉構型對泵浦抽水優化之探討

旋葉之細部結構跟泵浦效率有密切的關連[1,2],本研究專注探討不同幾何形狀旋葉構型之效應,我們先利用3D列印快速成形之技術優勢,做出50種不同的旋葉,分別有圓弧形、橢圓弧形及直立形進行實驗測試,並計算其總效率找出最高值的旋葉,編碼為A2-ea281-ia279-8。 將最高值旋葉,套入田口法進行優化,目標是望大。經過信噪比及均值分析後,發現影響總效率之最大參數是旋葉數,其次是出口角,最後是入口角,田口法中得出,重新設計的更細部參數的最佳旋葉是A2-ea28-ia23-8,同時利用機器學習建立迴歸函數模型,透過訓練的模型,預測出效率值,最後經過COMSOL Multiphysics軟體模擬檢測出A2-ea28-ia23-8依然保持最佳的內部流場狀況,並運用自行設計之簡易透明泵浦,進行測試與印證。

Dear NEMO~How are you?-動態位置捕捉海水魚及監控環境條件

網路上已經有很多人在做遠端的魚缸環境監控,但監控好環境條件,魚也不一定過得好,本實驗則是導入魚活動的參數,直接分析魚的活動力,以最直接的方式去觀測小丑魚的舒適程度。 本實驗研究目的為利用Arduino監測系統,監測裝置,並應用Blynk程式繪製環境數值趨勢變化圖。 本實驗的監控變因分為四個:水溫、pH值、水濁度,利用Blynk程式建立起一個能長時間即時監控及紀錄的系統,並建立起警示系統作為提醒裝置。 本實驗更進一步的結合Pixy Cam的監控系統,改變溫度及光照週期,並結合Raspberry pi的數據處理功能,自動處理龐大的數據,探討此兩變因對小丑魚活動力的影響。 此實驗是個發想,自動追蹤紀錄並處理大數據,此方法在未來可用來延伸研究養殖小丑魚的各種行為模式。

圖形化物聯網小型折線機之研究

生活中網路商店或夜市常看到業者手工用鋁線在折造型,這些造型必須應用手工方式生產,所以生產效率及重現性低,且這類型的塑性加工在課堂上我們只能觀看一些影片來教學,無法實際進行操作。本研究用單折彎頭來進行金屬線之折線加工,以課堂所學知識及加工技術背景進行開發,主要以3D列印機的Arduino+RAMPS1.4控制器為基礎,自行設計及加工折線機構、進線機構、轉軸機構與螺桿機構開發出小型折線機。利用Python程式語言開發出將圖型座標轉換為NC碼,透過ESP-01S物聯網方式,直接控制所需的機械動作,做出所需的作品,讓使用者只需畫圖即可做出成品,不需學習機器控制語法。本研究可自動化加工生產、具有3D折線功能、折不同軟硬度的材料、操作介面簡便、體積小、成本低。

壓電-摩擦感測器配合CNN進行步態分析及身分識別

我們設計了一款透過壓電片與摩擦片收集資料的智慧鞋,壓電片嵌入在鞋底,摩擦片安裝在前腳掌,兩者並聯。當人行走時,感測器會被擠壓變形,藉由DAQ(數據採集)收集感測器的電壓輸出,可顯示出正常步行、快走、慢跑和漫步等活動的訊息,利用時變電壓形式的輸出數據,與能夠識別時域信號的CNN深度學習(卷積神經網絡)進行不同類型步態辨識。 實驗結果顯示此方法可以辨檢測這四種步態,其辨識率高達95%。訓練好的CNN可同時辨識個人身份與步態。結果顯示,識別快走時辨識率極高,識別正常步行和漫步時辨識率為90%,識別慢跑時辨識率僅達49%。因此,我們未來預計將提高同時辨識不同受試者與不同步態之辨識率,並透過壓電能量擷取器為藍牙模組供電。

車輛預防翻覆系統

人們每天依靠著車輛往來各地,在帶來各種便利的同時,卻也伴隨著各種安全隱憂。本研究想要預防因駕駛轉向過於劇烈所導致的車輛翻覆行為,因此設計自動控制系統以避免車輛因轉向過於劇烈所導致的車輛翻覆行為。本研究利用車輛模型模擬轉向時車輛側向加速度的變化,根據模擬結果設計控制策略。控制目標為希望能降低車輛轉向時的側向加速度,進而避免翻車。控制策略分為門檻式控制策略與連續控制策略。控制系統輸入訊號為車輛側向加速度,而輸出訊號為車輛左右兩後輪馬達的扭矩訊號。控制系統只需要偵測車輛的側向加速度即可推得車輛轉向的時間點,並在車輛有較高可能翻覆時,根據控制策略予以車輛馬達扭矩輸出訊號的限制,避免轉向時側向加速度過高導致翻車。

使用電漿輔助化學氣相沉積及雷射退火於玻璃基板上成長結晶鍺薄膜

單晶矽被認為是製造太陽能電池的最佳材料,因為它在地球上儲量豐富且具有優異的光電性能,但其大量的應用受限於其成本和轉換效率。 單晶矽太陽能電池通常通過將單晶矽晶柱切割成350到450微米的切片來製造。現有的技術方法無法將其縮小到更小的規模,因此其發展面臨著開發複雜製造工藝和高單晶矽片生產成本的障礙。近來,在便宜玻璃基板上製備的薄膜太陽能電池成為重要的發展方向,可以減少矽層厚度來降低成本和材料消耗,同時可以有效減少載流子的複合,進一步能夠提高轉換效率。 本研究成功通過電漿輔助化學氣相沉積在玻璃基板上生長出非晶鍺薄膜,並利用雷射退火將非晶鍺薄膜轉化為多晶鍺薄膜,接著將進一步發展控制退火過程溫度的時間空間演化,以進一步做出高品質單晶鍺與矽薄膜,並應用在超薄膜太陽能電池上

鐵道守護者–高準確率AI鐵道辨識異物入侵系統設計之研究

在2021年4月2日台鐵太魯閣號在清水隧道行駛到轉彎口與滑落邊坡的工程車碰撞,造成火車出軌,衝入隧道中擦撞到隧道壁,造成49人死亡和247人輕重傷!當我們看到這則新聞時,心裡充滿驚訝與心疼!為了改善這問題,我們開始討論和查資料,發現台鐵在107年12月有一個「邊坡全生命監測系統」計畫,運用AI影像辨識技術,台鐵的規格是95%以上準確率,但因為辨識準確度不夠高,所以延宕到現在仍未完成。 我們設計AI鐵道辨識異物入侵系統,藉由攝影機將鐵道周遭影像傳至台鐵行控中心,運用AI深度學習技術辨識入侵鐵道的異物,從而準確判斷,讓火車駕駛員能提前預警,達到保障人車安全的目的。本研究並建立一套科學系統的方法來訓練視覺辨識模型,從而提高準確率,目前最高的準確率是97%!

真空磁浮飛輪儲能裝置

本研究實現一個真空中操作的小型磁浮軸承飛輪儲能系統,並探討其特性。為了延長能量保持時間、提高效率,我們分析了導致旋轉動能損失的因素。在自然減速測試中,於大氣環境操作的飛輪其阻力力矩隨轉速呈二次方增加;在真空環境中,阻力力矩隨著轉速的增加緩慢,約為線性關係。我們並發現馬達與發電機組導線中的渦電流損耗是真空中飛輪減速的主要因素。以多芯線圈取代單芯線圈後,待機時間延長為3 倍,自然減速至停止的時間在 8 小時以上,可以持續20分鐘供電1.3瓦。這項研究的結果可應用在電網中儲存能量的全尺寸飛輪。

竹片熱電流增益放大及熱電流充電器

本實驗利用竹片導熱性差的天然特性,將奈米金屬顆粒以高壓蒸氣及低壓吸入法嵌入竹片的維管束中,並將NaCl蒸煮滲入竹片組織,形成導電通道,以提升修飾後竹片的電導率。量測實驗發現以氯化鈉及銀奈米顆粒修飾後的竹片,電導率提升達11880倍,而熱導率僅提升10%,可成為常溫範圍熱電材料。NaCl在解離成Na+與Cl-導電率可提升103倍。我們將修飾後的竹片,密封在含水蒸氣的電絕緣小盒中,製作成竹片熱電裝置。LED燈泡發光度實驗,當竹片兩端溫差為45度時,燈泡發光度提升40%,為一熱電流增益放大器。串聯竹片熱電裝置在普魯士藍二次電池充電線路中,以0.015 mA電流充電,發現當竹片兩端溫差為45度時,充電電流提升到0.025 mA,飽和充電時間從原本的12小時,縮短到7小時。

仿生科技應用於提高太陽能板發電效率之研究

本作品自行開發組立氣體輔助彈性氣膜球實驗系統,並研製可調控之類複眼陣列結構母模具系列實驗設備,藉以複製出類昆蟲複眼之陣列微結構,同時複合石墨烯(graphene)並將其裝設於太陽能板上進行系統化實驗,探討類昆蟲複眼之陣列微結構對太陽能板發電效率之影響。實驗結果顯示,類複眼陣列透鏡結構,其單一特徵形狀愈小、密度愈高(週期愈小),其發電效率愈佳,本實驗條件下,發電效率最高可提升達7.86%,此外,本研究在光捕捉上再為仿生類透鏡穿上自然界的類透明外衣複合石墨烯情況下,其發電效率更佳,透鏡面噴塗石墨烯複合薄層1μm厚度,發電效率短時間提升最佳為14.21%,但隨著光照時間的增加(24小時)後,發電效率提升最佳為12.45%,本研究同時增能探討調控菲涅爾透鏡(Fresnells)聚焦方式,並獲得經最佳聚焦位置的獲得,將有助於對太陽能板發電效率提升。