全國中小學科展

工程學

改良型非整數次方PID控制器設計

傳統控制器都以一次方線性模式調整系統的比例、積分、微分等三參數減少誤差。為發展更佳誤差控制模式, 本研究嘗試加入誤差變數的次方運算。我們先以程式模擬一受固定阻力的線性系統,測試誤差變數次方的可行性,利用倒立擺系統進行模擬,並使倒立擺追蹤正弦波,以印證次方模式的控制效果。 經程式模擬後,我們認為不論目標值的大小,修改誤差參數的次方模式皆可使系統響應更快,控制效果更好。後續將利用倒立擺實測確認調整誤差次方可行性,並調整倒立擺的質量分布來模擬不同情況。相較於傳統的PID控制器,本研究拓增比例參數次方,建立PID三參數的次方模式,確認具更佳控制效果的可能性。希望未來可持續強化模式,將同步PID各參數次方模式,實際應用在機器手臂、溫度控制、建築防震等工程與工業。

Line Following Waiter Robot

Technology is erratic. We never know what could be the next big thing. Nowadays, IoT (the internet of things) has taken over the market. Every technology created nowadays is somehow related to IoT. You should manage to connect the IoT technology with a robust area of hospitality. Catering customers' needs during peak hours at any restaurant or cafe could get overwhelmed with hectic tasks such as taking orders, fetching water, and ordering meals. We created a raw model to accommodate the limitations of the human mind. The technology-based IoT (Internet of things) can come in handy during hectic sessions. A Robot waiter is built from scratch using materials like Arduino (2), Gear DC motor (2), L298N motor driver (1), Ultrasonic sensor (2), IR sensor (2), Servo motor (4) HC-05 Bluetooth module. Desired orders are sent on a wireless network through the menu bar to the kitchen. Then, the robots transfer the food from the kitchen to the customers. The floor will be all white, while there will be a strip of black line to connect every sitting and the kitchen. For instance, if table number three is to be served, we click the number three in the app, which renders an obstacle in table 3. The motor barricades the robot, and the ultrasonic sensors sense it, and it stops. If anyone picks the plate, the ultrasonic sensor senses it, the blockage is removed, and the robot paces in the designated path. People visited the place more often to experience such stimuli. Using the robots attracted more customers and made the work very quick.

IoT based automatic water temperature adjustor

This paper represents IOT Based Automatic Water Temperature Adjustor. IoT (Internet of Things) refers to the network of physical objects that are embedded with sensors, software, and other technologies for the purpose of connecting and exchanging data with other devices and systems over the internet. This system is for adjusting water temperature according to the possible surroundings such as home temperature, atmosphere temperature, etc. To solve problems like high water temperature while using, time-consuming waiting for water to heat and cool, high power consumption, and not satisfying water temperature this system offers the feature for automatically adjusting the temperature. Arduino, DHT11 (Temperature-Humidity Sensor), Bread Board, DS18B20 (Water Temperature Sensor), Jumper Wires, Resistor, I2C OLED, Water Heating Coil, Relay and LED are used for operating this system. The application of this system is very vast as it can be implemented in power plants, hospitals, mountain regions, local homes, and lodges. This system is time-saving, cost-efficient, easy to implement, provide automatic features, less power consumption, safety, and many more. Compared to other water geyser systems it has the feature of automatically detecting the environmental temperature and adjusting the temperature of the water accordingly. This system is still in its developing phase.

IoT based automatic water temperature adjustor

This paper represents IOT Based Automatic Water Temperature Adjustor. IoT (Internet of Things) refers to the network of physical objects that are embedded with sensors, software, and other technologies for the purpose of connecting and exchanging data with other devices and systems over the internet. This system is for adjusting water temperature according to the possible surroundings such as home temperature, atmosphere temperature, etc. To solve problems like high water temperature while using, time-consuming waiting for water to heat and cool, high power consumption, and not satisfying water temperature this system offers the feature for automatically adjusting the temperature. Arduino, DHT11 (Temperature-Humidity Sensor), Bread Board, DS18B20 (Water Temperature Sensor), Jumper Wires, Resistor, I2C OLED, Water Heating Coil, Relay and LED are used for operating this system. The application of this system is very vast as it can be implemented in power plants, hospitals, mountain regions, local homes, and lodges. This system is time-saving, cost-efficient, easy to implement, provide automatic features, less power consumption, safety, and many more. Compared to other water geyser systems it has the feature of automatically detecting the environmental temperature and adjusting the temperature of the water accordingly. This system is still in its developing phase.

Line Following Waiter Robot

Technology is erratic. We never know what could be the next big thing. Nowadays, IoT (the internet of things) has taken over the market. Every technology created nowadays is somehow related to IoT. You should manage to connect the IoT technology with a robust area of hospitality. Catering customers' needs during peak hours at any restaurant or cafe could get overwhelmed with hectic tasks such as taking orders, fetching water, and ordering meals. We created a raw model to accommodate the limitations of the human mind. The technology-based IoT (Internet of things) can come in handy during hectic sessions. A Robot waiter is built from scratch using materials like Arduino (2), Gear DC motor (2), L298N motor driver (1), Ultrasonic sensor (2), IR sensor (2), Servo motor (4) HC-05 Bluetooth module. Desired orders are sent on a wireless network through the menu bar to the kitchen. Then, the robots transfer the food from the kitchen to the customers. The floor will be all white, while there will be a strip of black line to connect every sitting and the kitchen. For instance, if table number three is to be served, we click the number three in the app, which renders an obstacle in table 3. The motor barricades the robot, and the ultrasonic sensors sense it, and it stops. If anyone picks the plate, the ultrasonic sensor senses it, the blockage is removed, and the robot paces in the designated path. People visited the place more often to experience such stimuli. Using the robots attracted more customers and made the work very quick.

10公斤級聚甲基丙烯酸甲酯—氣態氧混合式火箭引擎混和效率提升之初步探討

本研究首先設計一5公斤級之聚甲基丙烯酸甲酯—氣態氧混合式火箭引擎,搭載軸向注入器(axial injector)進行水平推力測試,控制氧化劑流量,改變燃燒時間,量測氧化劑截面通量與燃料耗蝕率,探討其燃燒特性、推力、比衝值與各項引擎參數,並評估該引擎作為混合式火箭推進系統之可行性。引擎成功研製後,本研究設計兩種渦漩注入器(swirling injector),幾何渦漩係數(SNg)分別為3、5,將推力目標提升至10公斤,並進行地面推力測試,探討幾何渦漩係數改變對於混合式火箭混和效率與引擎表現之影響。經實驗後證實渦漩注入器能有效提高引擎推力,且引擎推力及燃料耗蝕率會隨幾何渦漩係數提高而上升。未來希望能以本引擎為基礎,將推進系統放大後,將其裝載於小型火箭之上,進行探空及技術驗證之任務。

磷酸銀修飾二硫化錫奈米複合結構:應用於光催化二氧化碳還原反應

本研究利用水熱法合成 C-SnS2光觸媒,再藉由化學水浴沈澱法(CBP)將 Ag3PO4 奈米顆粒還原在 C-SnS2 表面,得到複合半導體 Ag3PO4@C-SnS2。接著再分別以 C-SnS2 和 Ag3PO4@C-SnS2 進行人工光合作用,將二氧化碳還原為可用能源,並探討兩者之差異。藉由電子顯微鏡、 X 光繞射儀、紫外-可見光光譜儀、傅立葉轉換紅外線光譜儀、 X 光光電子能譜儀和氣相層析儀,分析樣品的晶體結構、能隙、吸光範圍和二氧化碳還原反應的氣體產物。最後,我們發現複合物 Ag3PO4@C-SnS2 的光化學量子效率較純的 C-SnS2 高,也就是此複合物能有效的提升二氧化碳還原效率。

旋葉構型對泵浦抽水優化之探討

旋葉之細部結構跟泵浦效率有密切的關連[1,2],本研究專注探討不同幾何形狀旋葉構型之效應,我們先利用3D列印快速成形之技術優勢,做出50種不同的旋葉,分別有圓弧形、橢圓弧形及直立形進行實驗測試,並計算其總效率找出最高值的旋葉,編碼為A2-ea281-ia279-8。 將最高值旋葉,套入田口法進行優化,目標是望大。經過信噪比及均值分析後,發現影響總效率之最大參數是旋葉數,其次是出口角,最後是入口角,田口法中得出,重新設計的更細部參數的最佳旋葉是A2-ea28-ia23-8,同時利用機器學習建立迴歸函數模型,透過訓練的模型,預測出效率值,最後經過COMSOL Multiphysics軟體模擬檢測出A2-ea28-ia23-8依然保持最佳的內部流場狀況,並運用自行設計之簡易透明泵浦,進行測試與印證。

Dear NEMO~How are you?-動態位置捕捉海水魚及監控環境條件

網路上已經有很多人在做遠端的魚缸環境監控,但監控好環境條件,魚也不一定過得好,本實驗則是導入魚活動的參數,直接分析魚的活動力,以最直接的方式去觀測小丑魚的舒適程度。 本實驗研究目的為利用Arduino監測系統,監測裝置,並應用Blynk程式繪製環境數值趨勢變化圖。 本實驗的監控變因分為四個:水溫、pH值、水濁度,利用Blynk程式建立起一個能長時間即時監控及紀錄的系統,並建立起警示系統作為提醒裝置。 本實驗更進一步的結合Pixy Cam的監控系統,改變溫度及光照週期,並結合Raspberry pi的數據處理功能,自動處理龐大的數據,探討此兩變因對小丑魚活動力的影響。 此實驗是個發想,自動追蹤紀錄並處理大數據,此方法在未來可用來延伸研究養殖小丑魚的各種行為模式。

陶瓷燒成新技術- 以家用微波爐及自製集熱盒燒製高溫陶瓷之研究Research on firing high temperature ceramics with household microware oven and self-made heat collection box

本研究以家用微波爐及自製集熱盒燒製高溫陶瓷,用於家用微波爐的集熱盒材料的材質以玻璃纖維為主體為佳,集熱材料使用碳化矽顆粒級配重量比為1:3(320目碳化矽:180目碳化矽) 有最佳的微波吸熱效率並半浸泡的方式沾黏3.02mm (10層)最好;集熱盒玻璃纖維與集熱材料碳化矽之間的高溫黏著劑,以體積比3:7(矽酸鈉:水)為最佳配比。以家用微波爐搭配自製集熱盒可於26.5分鐘便可燒結陶瓷上釉作品,與傳統電窯需480分鐘比較可大幅減少94.48%的燒製時間,且其耗費的能源可省去89.44%的電費,以家用微波爐及自製集熱盒燒製之陶瓷品與傳統電窯燒製之陶瓷品在洛式硬度儀上測試結果無明顯差異,是未來極具發展性的陶瓷燒成技術。