全國中小學科展

臺灣

從導電度看乳化

界面活性劑因分子一端具極性基(polar group)而有導電性,本研究以市售之界面活性劑(PAOS洗碗精)從事其水溶液導電度探討,實驗顯示,PAOS水溶液之導電度隨溫度升高而增加,90°C之導電度約為常溫之三倍,純水之變化則極微。除溫度外,界面活性劑濃度亦影響導電度,濃度越高導電度越大,定溫(23°C)之導電度隨PAOS含量增加呈直線上升關係,PAOS含量每增2%導電度約增加1000μS,當含10%PAOS之水溶液中期導電度約增為4700μS。乳化效果對導電度亦有明顯之影響。在含PAOS 0.5~3%之水溶液中加入沙拉油,隨沙拉油加入量之增加其導電度均呈現下降現象。例如,在含有PAOS 3%之200克水溶液當中加入10克沙拉油時,其導電度約下降了15%。如果加入更多沙拉油,或者乳化攪拌過後之停滯時間過久,造成乳化平衡破壞,其導電度數據則較不規則。因此,我們可由溶液導電度之量測結果判定乳化效果,並可測定乳化攪拌之最佳條件。實驗除了以導電度探討其乳化效果外,並用顯微鏡同步觀測,以對結果做出更具說服力的解釋。將實驗數據以3D圖(立體圖)呈現以描述系統的連續變化狀態。再利用簡易的曲線回歸、斜率比較等,判定在定溫、一定攪拌條件下,清潔劑的較佳使用濃度。Surfactants have polar end groups at its molecular structure lead it with electrical conductivity in properties. This report discuss conductivity of a market purchasable surfactant named PAOS. Experiment results indicate conductivity of PAOS water solution increases with rising temperature. Triple in conductivity of this solution was found at 90°C than that of at room temperature. While the changes for pure water is very small. Except temperature influence, surfactant concentration also influence its conductivity. Generally, higher concentration gives higher electrical conductivity. At room temperature(23°C) a straight line relationship was observed between the solution concentration and the conductivity. For every increase 2% will led to increasing in conductivity for 1000 μS. When 10% PAOS in water solution is reached 4700 μS in conductivity was observed. Emulsification give obvious inference in conductivity. If cooking oil is added in 0.5~3% PAOS solution, conductivity will decrease with increasing oil added. For instance, when 10 grams of oil was added in 200 grams water solution that contain 3% PAOS, conductivity of this solution decreased for 15%. If more oil is added or setting time is too long after the solution is emulsified that destroy the emulsify balance. The conductivity of the system become irregular. In this way, it is possible to detect effect of emulsify through the measurement in its conductivity. Therefore most favorable condition in emulsification can be determined. In addition to using conductive measurement to determine effect of emulsification, microscopic technique also used trying to find even more convincible explanations. The data of different concentration experimented above can be presented on a 3D chart, we obtain several curves that can be differentially analyzed and estimated for a relatively ideal concentration, which will work more efficiently than others in the condition of the experiment.

從麵包蟲體內分離出可分解保麗龍之菌種

反泡泡之形成、存活與破滅的物理特性探討

This research mainly discusses an antibubble the interesting physical phenomenon that isn’t generally noticed .We use digital video cameras to obtain the experimental results, and pick up and analyze them with the computer. The experimental result as follow: (1) The formation of an antibubble mainly relates with the surfactant ingredients.The washing liquid, which has the surfactant characteristics the thinner its concentration; the lower the success rate of the antibubble. (2) The size scope of an antibubble is situated between 0.35 cm to 0.6 cm, and the size of the antibubbles produced by different densities of washing liquids are not obviously different. (3) The interior radius of an antibubble is approximately 3/4 times of the outer radius. (4) The survival time of an antibubble is mostly within 70 seconds, some minority surpasses for 100 seconds. Its average survival time is 40.65 seconds. (5) When the temperature of water the underneath liquid is between 20℃ to 90 ℃, the higher its temperature; the lower the success rate of the antibubble. After the temperature reaches 80 ℃, the success rate of the antibubble turns into 0. Besides, the higher the temperature of water; the shorter survival time of the antibubble. (6) Antibubble die by itself can be induced two kinds of types. One is centralism death, and another one is vibration death. Vibration death is less common and rare. Its dead process lasts longer time than the general antibubble, and also has 2 to 3 times back and forth vibration. 本研究主要要探討「反泡泡」(antibubble)這個一般不被注意到的有趣物理現象。我們用數位攝影機進行實驗結果的取得,並以電腦進行擷取與分析。實驗結果為:一、 反泡泡的生成主要與界面活性劑的性質有關。洗碗精這樣具界面活性劑特性的物質濃度越稀薄,反泡泡的成功越低。二、 反泡泡的大小範圍介於0.35cm 至0.6cm,不同濃度所產生的反泡泡大小並無明顯之差異。三、 反泡泡的內半徑約為外半徑之3/4。四、 反泡泡存活時間大多在70 秒之內,僅有少數超過100 秒,平均存活時間為:40.65 秒。五、 承接液體在20℃至90℃的範圍中,隨著溫度的增加反泡泡生成成功率越下降,在80℃之後,成功率降至0。且溫度增加會使反泡泡存活的平均時間下降。六、 反泡泡自行破滅可以歸納出兩大種類型。其一為:「集中破滅」;另一為「震盪破滅」。「震盪破滅」情形較為特殊少見,其破滅過程較一般反泡泡來得更久,且有2 至3 次的來回震盪。

螯合劑對銅.鉛.鋅離子萃取.分離及測定之微型實驗研究

以微型實驗的方式用螯合劑:dithizone(diphenyl thiocarbazone)在四氯化碳中對金屬離子銅(Ⅱ)、鉛(Ⅱ)、鋅(Ⅱ)進行溶劑萃取與反萃取的平衡所得條件,以及由金屬離子與螯合劑結合時的莫耳數比與分離條件的探討得知,僅僅由控制溶液之pH值便可以使水溶液中的銅、鉛、鋅離子分離。於本研究中所使用之萃取光度分析法,對銅可以測至0-0.1ppm,鉛可以測至0-5.0ppm,鋅可以測至0-0.8ppm;莫耳吸光率分別為:Cu[HDz]2:4.50x104 L/moles‧cm(550nm)。Pb[HDz]2:6.85x104 L/moles‧cm(520nm)。Zn[HDz]2:9.50x104 L/moles‧cm(540nm)。其結果可做為重金屬離子廢水淨化效能之微型檢測指標。 The microscale experiment that the equilibrium of extraction and back extraction of Cu(Ⅱ)、Pb(Ⅱ)、and Zn(Ⅱ) with the extraction of chelate agent- diphenyl thiocarbazone(dithizone) in carbon tetrachloride were investigated. The conditions of extraction and back extraction of pH1/2 and the stability of these chelate compounds have the possibility to separate these Cu(Ⅱ)、Pb(Ⅱ)、and Zn(Ⅱ) mental ions in aqueous solution or in water sample mutually. The separation and determination of Cu(Ⅱ)、Pb(Ⅱ)、and Zn(Ⅱ) up to 0~1ppm(Cu), 0~5ppm(Pb), 0~0.8ppm(Zn) with dithizone in CCl4 by extraction spectrophotometry has been established. The molar absorptivity expresssed in Lmol-1cm-1 was found to be 4.50x104(550nm)for Cu[HDz]2, 6.85x104(520nm) for Pb[HDz]2, 9.50x104(540nm) for Zn[HDz]2, respectively.

耐熱藍綠菌光反應的特殊保護機制─狀態變遷

"隨著全球溫度逐年升高,生物如何在高溫下生存成了一個急需解決的問題,本研究探討耐熱藍綠菌(Thermosynechoccus sp.CL1)與常溫藍綠菌(Synechocystis sp. PCC6803)在不同溫度下光合作用光反應的異同,並了解耐熱藍綠菌光反應耐熱的原因。\r 本研究中發現在高溫下耐熱藍綠菌存在有顯著的狀態變遷(state transition)機制,其藻藍素(phycobilisome)在暗處理的狀況下不會與光系統二結合,而這個機制可以減少光系統二在高溫下高電子傳遞速率對光系統二本身造成的破壞,支持了狀態變遷現象是耐熱藍綠菌在高溫下進行光合作用光反應的一種重要保護機制。"

是誰偷了水的熱?-傳導、對流、輻射

在研究水的降溫過程中,經由探討得知散熱速率與溫度有關,而根據理化課本第五章的觀念,熱量的傳遞共分為傳導、對流及輻射三種方式,因此我們根據原理歸納出,散熱速率和溫度的關係式為R(T) = K1T+K2T4-K0(詳見P.11)。接下來,我們從散熱速率對溫度的關係曲線,找出K1、K2及K0,以探討環境條件不同時,熱量傳遞方式所產生的變化。 從實驗結果我們發現,水量越少降溫速率越快,但實際上,水量少傳導和輻射的散熱面積也較小,傳導和輻射散熱的速率隨之降低,因此散熱速率反而較低。此外,我們根據降溫速率、散熱速率和溫度的關係圖及K1、K2 的變化,探討容器厚度、空氣流速、溶液與燒杯外壁顏色不同時,散熱速率的變化,並分析在不同的條件狀態下,熱量傳遞方式的改變。最後,藉由乙醇比熱之測量,進一步驗證所推導的公式。 In the research of cooling down in temperature of water, we realized that the speed of radiation relates to temperature. According to the concept in chapter 5 of Physics, the conveyance of thermal can be divided into three ways which are Conduction, Convection, and Radiation. Therefore, we can conclude the relationship between radiation speed and temperature as R(T) = K1T+K2T4-K0 (see chapter 11). We can find K1, K2 and K0 from the relation curve of radiation speed and temperature to probe into the changes of different thermal conveyances under different environmental condition.

仲夏夜裡的精靈-探討發光胺之化學發光反應與催化劑之作用

過去,螢光的使用只局限於釣魚、登山等無法使用電燈或火把時使用的一種較為安全的冷光。而今,我們使用這種化學發光的機會也越來越多,也再成了更多的汙染,所以我們想藉此去研討有關螢光棒之化學反應與其反應之改良。在這一篇報告當中,我們討論與研究有關Luminol發光之反應與催化劑對其反應之影響;比較在380nm~480nm範圍內不同波長所產生之光度及比較各種不同催化劑在相同波長的發光度隨反應時間的變化。我們發現在此反應之中,以k3Fe(CN)6可以產生出最大的亮度,且由實驗的結果得知Luminol的發光無法維持兩分鐘,發光時間較為短暫。映之催化效果是同時被金屬離子和根離子影響。具有明顯催化效果(最大光度超過2.5)的鹽類濃度以稀薄為佳,約10-3M。在此反應中以k3Fe(CN)6為其催化劑,可以產生一種穩定且明亮的發光,是一種較佳的催化劑在此化學發光反應之中。In the past, fluorescence was limited in being used in fishing or hiking, in which light or a torch was not available. Fluorescence is much safer because of its feature of luminescence. Today, the opportunities we use this fluorescence become more and more. The more people will use fluorescence. The more environment pollution will be caused, that is the reason we would like to study the chemical reaction of fluorescence and its solution to reduce pollution. In this paper, chemical reactions between the Luminol and different catalysis agents are studied, the comparisons between the reaction condition of the catalysis agents and the Luminol, to measure the light intensity variation in 350-500nm light wavelength range. And to measure the light intensity variation following the time of the chemical reactions between the Luminol and different catalysis. We found out that the chemical reactions between the Luminol and k3Fe(CN)6 being the catalysis agents can produce the maximum light strength. But the time of the chemical reactions is much shorter, it only can keep this chemical reactions operating in two minutes. The chemical reaction’s catalysis agent is affected by metallic ion and SO4(2-) , NO3(1-),Cl(1-), when the catalysis agent’s concentration is sparely, this luminous reaction is more obvious( the maximum light strength is over 2.5) .It can produce a fluorescence which is steady and luminous, and it is better to become the catalysis agent material of the fluorescent chemical reactions.

終結保麗龍污染!---利用保麗龍廢棄物處理重金屬廢水之研究

保麗龍(EPS)由於無法分解一直是環境保護的嚴重困擾。本研究是將保麗龍改質為陽離 子交換樹脂(我們稱為”保麗龍膠(EPSR)”),藉以吸附重金屬廢水中的銅離子。研究內容包括: 保麗龍膠之特性、吸附銅離子之最佳條件、保麗龍膠之再利用及最終產物之固化,企圖提供 一個解決保麗龍汙染之整套方案。 我們採用五種日常生活中常見的保麗龍廢棄物進行測試。首先將它們依下列程序處理: 丙酮溶解→硬化→打碎→與濃硫酸共煮三小時→浸於50%硫酸溶液中→沖洗→以水浸泡,將 廢棄保麗龍磺酸化為保麗龍膠。在這五種保麗龍膠之中,5 號膠(由一般家電之保麗龍襯墊所 製成)具有最佳之磺酸化比例(莫耳分率)、吸附量及吸附速率。經檢測保麗龍膠的特性之後, 發現保麗龍膠為多孔物質,具有-SO3H 的官能基,吸附的模式是先進行化學吸附,高濃度 時兼具物理吸附。 保麗龍膠對銅離子的吸附研究是以一個自動化之差動電壓檢測器進行監測,同時用電腦 精確的擷取數據。保麗龍膠達到吸附銅離子的最佳條件依次為:使用細粒的5 號保麗龍膠、 銅離子溶液的濃度為50 ppm、操作溫度為10 ℃、廢水的流速為每分鐘為 5 c.c.、以及pH 值約為4.30。多次吸附確可將金屬離子幾乎完全去除。在一次初步測試中,我們成功地將三 個自製的微型保麗龍膠儲存槽串聯,進行管柱式的多次吸附,使得高吸附率時間可以維持3.5 小時以上。 保麗龍膠達到飽和吸收後,我們再將保麗龍廢膠與由硫酸廢液和碳酸鈣製得的硫酸鈣混 合,製成黏土,可以製作造型磁鐵、分子模型等物品,達成最終產物之廢物利用,完成廢棄 保麗龍再利用之完整方案。EPS waste is a severe problem for environment due to its non-dissolvability. This research proposed a method to transfer the EPS waste to cation exchange resin, designate as EPS rubber (EPSR), which could absorb Cu-ion in wastewater. The study included the character of the EPSR, the optimal conditions for Cu-ion absorption, the reusability of the EPSR and the solidification of the final production, trying to terminate the pollution of EPS waste. Five different EPS wastes were tested. They were processed as following: solved with acetone => hardening => smashing => boiling with sulfuric acid for three hours => soaking in 50% sulfuric acid solution => rinsing => soaking with water. Then the EPS were sulfonic acidified as EPSR. Among these five EPSR, EPSR-e, which was obtained from the EPS usually used for the pad of electric appliances, exhibited the best sulfonated ratio (in mole), adsorption quantity and adsorption rate. EPSR has a porous structure with a -SO3H functional group. The mechanism of adsorption is the chemical adsorption with a physical adsorption at high concentration. The Cu-ion saturating adsorption was investigated with a automatical differential-voltage detector, enabling the data to be precisely acquired by a computer. The optimal conditions for Cu-ion adsorption were employing fine EPSR-e particles, a Cu-ionic solution of 50 ppm in concentration, a flow rate of 5 c.c. per minute and a pH of about 4.30 at 10 ℃. Multiple adsorptions could remove Cu-ions almost completely. In a preliminary test, three EPSR-e absorption cells were seriated as a column, achieving a high-absorption condition to be maintained for more than three and a half hours. After the adsorption was saturated, the final production were mixed with calcium sulfate obtained form the earlier sulfuric acid waste solution to become the clay, acomplishing a total solution for EPS waste reuse.

共生性倒立水母(Cassiopeia andromeda)之光生物學研究

倒立水母(Cassiopea andromeda)為一種體內含有共生性蟲黃藻的缽水母類,其傘部收縮運動可引發水流,為水母帶來獵物,同時也是與外界物質交換的重要途徑。共生藻則以自水母體獲得的物質與光能行光合作用,以供應自身與宿主水母之需。本實驗首先探究各種光環境因子(光強度、日週律、不同波長色光)與倒立水母個體大小、飢餓狀態及有無共生藻等因子,對其傘部收縮頻率的影響,進而研究倒立水母異營性攝靪與個體耗氧率等基本能量代謝特徵。研究結果顯示:正常的碟狀體具有明顯的光趨性行為,伽無共生藻的個體則否。水母傘部收縮頻率隨體型的增大而降低,在自然光照與餵靪的條件下,其收縮頻率則有明顯增加的趨勢;反之,黑暗與持續的飢餓狀態,會使其收縮頻率明顯下降。自然光照組的水母個體,其24小時內的收縮頻率呈明顯的日週律變化,伽黑暗組則未見此一現象。以不同色光照射的各組水母,其傘部收縮頻率未見明顯變化,伽各組無共生藻的個體則明顯低於正常的個體。此外,體型較大的個體,其水體過濾作用與清除率(異營性攝靪能力)皆明顯高於小型個體,而且無共生藻個體的清除率高於相同體型的正常個體,暗示其異營性攝靪能力的增加與能量獲得策略的改變。在黑暗中的耗氧率(基礎代謝率),則以正常的個體較高,而且無論正常的個體或無共生藻的個體,其個體單位體重耗氧率皆隨體型的增大而減少,呈現明顯的尺度效應。綜合上述結果可知:光環境因子能明顯影響倒立水母傘部收縮頻率,且可能係透過共生藻的光合作用等相關生理機制進行,進而影響其異營性攝靪與光環境選擇能力。

不對稱之美---大葉桃花心木種子飛行軌跡的分析

大葉桃花心木的種子是單翅種子,經測試發現它的結構有降低終端速度及飄移過程具方向性提高種子分佈間距的特性,研究結果顯示: 1.飛行軌跡可分成五個時期:自由落體期、減速期、緩飛期、加速期及終端速度期。 2.種子旋轉飛行軌跡的前進比(advance ratio)屬於推進效率