全國中小學科展

終結保麗龍污染!---利用保麗龍廢棄物處理重金屬廢水之研究

科展類別

臺灣國際科展

屆次

2004年

科別

環境科學

學校名稱

國立高雄師範大學附屬高級中學

指導老師

曾鶯芳、鄭龍

作者

鄭玉辰

關鍵字

保麗龍,重金屬廢水

摘要或動機

保麗龍(EPS)由於無法分解一直是環境保護的嚴重困擾。本研究是將保麗龍改質為陽離 子交換樹脂(我們稱為”保麗龍膠(EPSR)”),藉以吸附重金屬廢水中的銅離子。研究內容包括: 保麗龍膠之特性、吸附銅離子之最佳條件、保麗龍膠之再利用及最終產物之固化,企圖提供 一個解決保麗龍汙染之整套方案。 我們採用五種日常生活中常見的保麗龍廢棄物進行測試。首先將它們依下列程序處理: 丙酮溶解→硬化→打碎→與濃硫酸共煮三小時→浸於50%硫酸溶液中→沖洗→以水浸泡,將 廢棄保麗龍磺酸化為保麗龍膠。在這五種保麗龍膠之中,5 號膠(由一般家電之保麗龍襯墊所 製成)具有最佳之磺酸化比例(莫耳分率)、吸附量及吸附速率。經檢測保麗龍膠的特性之後, 發現保麗龍膠為多孔物質,具有-SO3H 的官能基,吸附的模式是先進行化學吸附,高濃度 時兼具物理吸附。 保麗龍膠對銅離子的吸附研究是以一個自動化之差動電壓檢測器進行監測,同時用電腦 精確的擷取數據。保麗龍膠達到吸附銅離子的最佳條件依次為:使用細粒的5 號保麗龍膠、 銅離子溶液的濃度為50 ppm、操作溫度為10 ℃、廢水的流速為每分鐘為 5 c.c.、以及pH 值約為4.30。多次吸附確可將金屬離子幾乎完全去除。在一次初步測試中,我們成功地將三 個自製的微型保麗龍膠儲存槽串聯,進行管柱式的多次吸附,使得高吸附率時間可以維持3.5 小時以上。 保麗龍膠達到飽和吸收後,我們再將保麗龍廢膠與由硫酸廢液和碳酸鈣製得的硫酸鈣混 合,製成黏土,可以製作造型磁鐵、分子模型等物品,達成最終產物之廢物利用,完成廢棄 保麗龍再利用之完整方案。EPS waste is a severe problem for environment due to its non-dissolvability. This research proposed a method to transfer the EPS waste to cation exchange resin, designate as EPS rubber (EPSR), which could absorb Cu-ion in wastewater. The study included the character of the EPSR, the optimal conditions for Cu-ion absorption, the reusability of the EPSR and the solidification of the final production, trying to terminate the pollution of EPS waste. Five different EPS wastes were tested. They were processed as following: solved with acetone => hardening => smashing => boiling with sulfuric acid for three hours => soaking in 50% sulfuric acid solution => rinsing => soaking with water. Then the EPS were sulfonic acidified as EPSR. Among these five EPSR, EPSR-e, which was obtained from the EPS usually used for the pad of electric appliances, exhibited the best sulfonated ratio (in mole), adsorption quantity and adsorption rate. EPSR has a porous structure with a -SO3H functional group. The mechanism of adsorption is the chemical adsorption with a physical adsorption at high concentration. The Cu-ion saturating adsorption was investigated with a automatical differential-voltage detector, enabling the data to be precisely acquired by a computer. The optimal conditions for Cu-ion adsorption were employing fine EPSR-e particles, a Cu-ionic solution of 50 ppm in concentration, a flow rate of 5 c.c. per minute and a pH of about 4.30 at 10 ℃. Multiple adsorptions could remove Cu-ions almost completely. In a preliminary test, three EPSR-e absorption cells were seriated as a column, achieving a high-absorption condition to be maintained for more than three and a half hours. After the adsorption was saturated, the final production were mixed with calcium sulfate obtained form the earlier sulfuric acid waste solution to become the clay, acomplishing a total solution for EPS waste reuse.

終結保麗龍污染!---利用保麗龍廢棄物處理重金屬廢水之研究

Adobe Reader(Pdf)檔案