全國中小學科展

臺灣

Electrical Characterization of MoS2 Field-Effect Transistors at Cryogenic Temperatures

隨著矽基電晶體逐漸微縮,其元件效能將接近其物理極限,二硫化鉬 (MoS2) 等二維材料藉著其獨特的特性(如寬的能隙、高電流開關比及優異的載子遷移率等),可作爲矽的替代材料用於未來的電子科技應用。本研究旨在製造MoS₂ 的場效電晶體並研究元件之低溫特性。我們成功利用機械剝離法製備並轉移二維 MoS2薄膜至二氧化矽/矽基板上,並且製造MoS₂ 場效電晶體,並量測其室溫(300 K)至極低溫(~ 4 K)的電流特性,元件在此溫度範圍中具有優異的特性,能有效地調控電流調控,表現出良好的下閘極控制能力,同時具有低次臨界擺幅及高電流開關比(~ 106)。在極低的溫度(4 K)下,該電晶體仍能保持良好的運作,顯示出MoS₂應用於低功耗且高元件效能的低溫電子元件的潛力。

Insights into the Anti-Inflammatory Effects and Physicochemical Properties of Polysaccharides Extracted from Selected Medicinal Mushrooms

硫磺菇(Laetiporus sulphureus)和桑黃菇(Sanghuangporus sanghuang)是東亞,特別是台灣森林中的兩種真菌。這些真菌的次級代謝物,特別是多醣,具有抗炎和抗癌的生物效應;其地面子實體長期被當地人作為傳統藥物使用。然而,這些藥用特性及其機制尚未充分研究。本研究旨在分析和量化這些真菌多醣的抗炎效果。從硫磺菇中提取硫酸化多醣,從桑黃菇中提取非硫酸化多醣,並使用水和乙醇進行多步純化。隨後,將純化後的產品餵給巨噬細胞進行體外測試以檢查其抗炎性。硫酸化多醣的最佳濃度為150 ppm,能夠最大程度地降低自由基濃度21.6%,且不影響細胞活力。相比之下,桑黃菇的所有多醣濃度均顯示出增強的細胞炎症,顯示其作為藥物無效,因為沒有去除真菌毒素。相比之下,硫磺菇的硫酸化多醣顯示出其藥用潛力,對生物醫學和生物探索領域具有新啟示。

模擬黑洞潮汐破壞事件之演化和分析其逃逸比例與吸積率之探討

在超大質量黑洞周圍,偶爾能觀測到潮汐破壞事件的發生,而這也是一個能夠探測黑洞的手段。潮汐破壞事件是一種特殊的現象,當一個天體進入到所謂的「洛希極限」半徑範圍內時,因為受到的潮汐力超越了自身的重力而遭到撕裂。當這個事件發生時,會因為黑洞在吸積的過程中產生明顯的亮度變化,因此可以透過一系列的亮度變化觀測潮汐破壞事件,並可以推算黑洞的各項參數,因此潮汐破壞事件在天文學的發展上有其重要性。 因此,我們想要嘗試模擬潮汐破壞事件的演化過程。我們學習Linux語言以及如何使用Mcluster和PeTar等模擬軟體,並透過Python分析模擬結果,然後與理論預測值進行比較,以了解我們有那些地方需要修正。

碳源調控對酵母菌抵抗脫水能力及存活率影響

脫水技術在酵母菌應用方面則對保存和傳播重要的菌株十分有益。然而,脫水處理的酵母菌常常出現存活率過低的問題,若將生產規模擴大,導致的損失將不堪設想。 本研究探討脫水逆境下碳源調控對酵母菌抵抗脫水能力及存活率的影響。發現酵母菌面臨脫水生存逆境,會透過粒線體分裂與融合維持活性,此機制與DNM1密切相關。脫水前階段提供葡萄糖碳源可使酵母菌抵抗脫水逆境能力最佳,反之乙醇最差。甘油調節細胞內氧化還原平衡和滲透壓有助於細胞存活。脫水後復水階段提供葡萄糖可使酵母菌存活率最高,乙醇最差。脫水前碳源改變對存活率的影響更為顯著,而SNF1機制調控是影響酵母菌代謝養分及存活率的重要因素。 本實驗成果可提供酵母菌在食品工業、製藥、化工及生物燃料等領域的培養和保存技術,提高酵母菌的存活率和利用效率以減少浪費,具廣泛應用前景和經濟效益。

深度學習預測仿生複合材料的斷裂行為

本實驗主要透過程式模擬及數據分析,探討受力材料之裂紋走向。透過模擬,我們找出會影響裂紋發展的因素,如原斷裂紋的長寬比。於不同的的材料會影響裂紋走向,我們將材料設置為單一材料與兩種材料組成的複合材料進行探討,並將結果進行分類。此實驗有助不我們去理解同的初始裂紋對不材料後續的裂紋關係,目前也正在嘗試利用cGan系統預測複合材料與裂紋的關係,希望能預測出準確的結果。

Feasible fabrication of chitosan capped mesoporous silica nanoparticles as a smart mucoadhesive drug delivery platform for dexamethasone

中孔二氧化矽納米顆粒(MSN)由於其高孔隙率而適合成為藥物載體,可增加ul藥物的負載量。幾丁聚糖是一種帶正電的聚合物,用於修飾MSN表面,以達到強力的靜電吸附力,並進一步提高藥物負載能力,以及可持續併緩慢藥物釋放的控制。 MCM-41和 MCM-48型的MSN,通過 CTAB界面活性劑為模版,以溶膠-凝膠法制備。SBA-15型的MSN由 P123為模版製備。MCM-41 通過戊二醛的交聯進一步被幾丁聚糖包覆 (MCM-41-CHIT)。 利用 X 射線繞射儀驗證了所有載體皆是中孔洞的六方密堆積晶體結構。利用傅里葉變換紅外光譜,鑒定了烷基、胺基、和二氧化矽官能團,證實了表面的幾丁聚糖。 MCM-41-CHIT 的地塞米松載藥量為53.7%。MCM-41有突發釋放的現象,在 兩天內釋放出 80%。另一方面,MCM-41-CHIT中的藥物釋放,表現出恆定的釋放,五天後僅釋放出19.7%。 這項研究確定了MCM-41-CHIT 是可應用在粘膜吸附藥物遞送系統,可做為好的候選藥物載體。