格子點的可見性研究
本文的主要結果有兩部分,第一部分,對於固定的𝑏 ∈ 𝑁以原點 O為觀測點,𝑓(𝑥) = 𝑎𝑥𝑏, 𝑎 ∈ 𝑄為觀測視線,觀測目標為格子點陣列𝑉(𝑚) = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑚 },研究其中可見點的數量與機率。我們發現可見點的數量與歐拉函數及默比烏斯函數有關,可見點的機率也與黎曼𝑧𝑒𝑡𝑎函數具有關聯性。第二部分,對於固定的𝑏 ∈ 𝑁,我們在 𝑥軸與𝑦 軸上布置觀測點,以布置的觀測點為新原點,𝑓(𝑥) = 𝑎𝑥𝑏, 𝑎 ∈ 𝑄為觀測視線,研究將目標點集𝑉(𝑚 × 𝑛) = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁, 1 ≤ 𝑖 ≤ 𝑚}完整觀測的布點方法與數量。得到重要成果如下,設正整數𝑚 ≥ 6且𝑇 ⊂ {1, … , 𝑚 + 1}為一個 𝐹(𝑚) −覆蓋,𝑟為大於𝑚的最小質數,對於目標點集𝑉(𝑚 × 𝑛),建構觀測點集 𝑆2 = {(0, 0), (0, 𝑟)}∪{(𝑡, 0) | 𝑡 ∈ 𝑇},則 𝑉(𝑚 × 𝑛)為𝑆2 −可見。並進一步研究將目標點集改為𝑉(𝑛 × 𝑚) = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁, 1 ≤ 𝑗 ≤ 𝑚},發現其所需要的觀測點數可顯著減少。