3D Arithmetic Billiards investigating edge points with a number theoretic approach
The billiard table is a cuboid with integer side lengths. A point-wise ball moves with constant speed along segments making a 45◦ angle with the sides and bounces on these. We allow the ball to start from any of the 8 corners, resulting in a periodic trajectory known as a corner path. The geometry of the path depends on the artihmetic properties of the side lengths (for example if these are pairwise coprime). Points of contact between the ball and edges, known as edge points, are inves- tigated and their characteristics like distribution explicitly described. This generalizes a previous work by Perucca, Reguengo da Sousa and Tronto of University of Luxembourg.
Generalized Skolem-type Sequence的相關探討
本研究探討 Skolem sequence之推廣generalized Skolem-type sequence,是否能類比Skolem sequence 探討奇偶性 (parity) 的問題,也就是依照各數字所處位置模重複度 𝑠 所得餘數分類,觀察必不能填滿數列的組合,以找到數列存在的必要條件。接著以奇偶性 (parity) 及密度 (density) ,也就是比較數列位置差最大值與放入數列各數字的位置差總和,找出generalized Skolem sequence 的推廣 generalized Skolem-type sequence 存在的必要條件。 至於充分性,我構造出 hooked (1, 𝑚)-near Skolem sequence 在 𝑛 ≡ 2, 3 (mod 4), 𝑚 ≡ 1 (mod 2) 的情形,並猜想推導出的 hooked (1, 𝑚)-near Skolem sequence 必要條件也具充分性。接著我透過串接 Lanford sequence 的方式,構造出 𝑛 ≥ 3𝑚𝑘 + 1, 𝑚𝑖 ≥ 3𝑚𝑖−1 + 1 ∀ 3 ≤ 𝑖 ≤ 𝑘 的 (𝑚1, 𝑚2, … , 𝑚𝑘)-near Skolem sequence 及 hooked (𝑚1, 𝑚2, … , 𝑚𝑘)-near Skolem se- quence 存在的充分必要條件。
格子點的可見性研究
本文的主要結果有兩部分,第一部分,對於固定的𝑏 ∈ 𝑁以原點 O為觀測點,𝑓(𝑥) = 𝑎𝑥𝑏, 𝑎 ∈ 𝑄為觀測視線,觀測目標為格子點陣列𝑉(𝑚) = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑚 },研究其中可見點的數量與機率。我們發現可見點的數量與歐拉函數及默比烏斯函數有關,可見點的機率也與黎曼𝑧𝑒𝑡𝑎函數具有關聯性。第二部分,對於固定的𝑏 ∈ 𝑁,我們在 𝑥軸與𝑦 軸上布置觀測點,以布置的觀測點為新原點,𝑓(𝑥) = 𝑎𝑥𝑏, 𝑎 ∈ 𝑄為觀測視線,研究將目標點集𝑉(𝑚 × 𝑛) = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁, 1 ≤ 𝑖 ≤ 𝑚}完整觀測的布點方法與數量。得到重要成果如下,設正整數𝑚 ≥ 6且𝑇 ⊂ {1, … , 𝑚 + 1}為一個 𝐹(𝑚) −覆蓋,𝑟為大於𝑚的最小質數,對於目標點集𝑉(𝑚 × 𝑛),建構觀測點集 𝑆2 = {(0, 0), (0, 𝑟)}∪{(𝑡, 0) | 𝑡 ∈ 𝑇},則 𝑉(𝑚 × 𝑛)為𝑆2 −可見。並進一步研究將目標點集改為𝑉(𝑛 × 𝑚) = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁, 1 ≤ 𝑗 ≤ 𝑚},發現其所需要的觀測點數可顯著減少。
心線相依 The Extensions of Euler Line
此題出處為 Crux Mathematicorum, Vol. 44(4), Apr 2018[1]。已知H為△ABC 的垂心,自A、B與C往對邊̅BC、̅CA與̅AB 作三高,得三垂足為 D、E 與F,從△ABC的三邊往外作矩形,使其寬與三邊上的高成比例,再將這三個矩形相臨的頂點連起來,形成三組三角形。證明這三個三角形的中線會三線共點。事實上這點就是外心。 我將原題延伸為四種建構方法,從△ABC 的三邊往外作平行四邊形,分別連三個外接三角形,考慮其中線、角平分線、中垂線與高,以及三角形的五心。分析三線共點的情形。 本研究最特別之處是在四種建構96種情形中,共有69種共點。其中有7 種情形,當任意點J 配上三中線共點於P時,此時J、重心G與P點三點共線,且̅JG :̅GP=2 :1。當任意點J與垂心重合時,三中線共點於外心,此時這條直線即歐拉線。另外有 11 種情形,當任意點J配上三中線共點於P時,此J、重心G與P點三點共線,且̅JG :̅GP=1: 2。當任意點J與外心重合時,三中線共點於垂心,此時這條直線即歐拉線。且當f1(J,m)=P1,f2 (J , m)=P2,此時P2、P1、重心G與J共線。最特別的是當J與外心重合時, P1 是九點圓的圓心。