探討「互相牽制」中整除問題的整數解
在這篇作品中,探討科學研習月刊中森棚教官的數學題-「互相牽制」的整除問題,此問題是指「你可以找到多少組正整數對(x, y),讓x的平方減5為y的倍數且y的平方減5為x的倍數?」。我們除了探討原問題之外,也探討將5改為任意整數 l 的情況,我們要刻畫滿足 y | x2- l 且 x | y2- l 的所有整數解(x, y)。 首先建構生成另一組整數解的方法且推導出在 (x2+y2-l) / xy 為整數的條件下生成另一組整數解的方法。在 (x2+y2-l) /xy 為整數的條件下,可利用二階齊次線性遞迴數列及二次曲線刻畫滿足 y | x2 - l 且 x | y2- l 的所有整數解(x, y)。當上述條件不成立時,利用二次曲線試圖刻畫滿足 y | x2 且 x | y2 的所有整數解(x, y),進一步推導出在特定條件下,可利用二次曲線刻畫滿足 y | x2且 x | y2的所有整數解(x, y)。
從心開始-三角形的四心到各邊距離和
此研究討論三角形𝐴𝐵𝐶的外心、重心、垂心、內心到三邊之距離,並依銳角、直角及鈍角三角形,去比較各距離總和之大小關係及相互之間的關聯性。其主要結果為: 1.用外接圓半徑𝑅及∠𝐴,∠𝐵,∠𝐶表示各心到三邊之距離。 2.設外心、重心、垂心、內心到三邊之距離總和依序為𝑑1, 𝑑2, 𝑑3, 𝑑4 ,其大小關係為: (1)在銳角∆中,𝑑1 ≥ 𝑑2 ≥ 𝑑4 ≥ 𝑑3,僅當正∆ 時,等號成立。 (2)在直角∆中,𝑑1 > 𝑑2 > 𝑑4 > 𝑑3。 (3)在鈍角∆中,𝑑1 > 𝑑2 > 𝑑4 恆成立。𝑑3與𝑑1、𝑑2、𝑑4比較,並無絕對關係,但在等腰鈍角∆,我們給出其大小順序的臨界值。 (4)在鈍角∆中,若最大內角≥ 120° ,則𝑑3 > 𝑑1 > 𝑑2 > 𝑑4。 3.在銳角∆ 及直角∆ 中,等式𝑑2=2/3 𝑑1+1/3 𝑑3和 𝑑2+1/3 𝑑1-1/3 𝑑3-1/3 𝑑4 = 𝑅 恆成立。
On the Application of Inequalities Containing Sums of Minimum/Maximum of Numbers
Retail inventory management is a crucial part of many businesses due to the high profit associated with it as well as the uncertainty around it, especially for industries with short production cycles and a complex supply chain.Proper management ofretail inventories can lead to decreased inventory costs, prevent spoilage and obsoles- cence, and improve customer satisfaction, all of which lead to increased profits for the company.Inthispaper,wefirstproposeextendingawell-knowninequalityandtry to generalize it to other conditions and similar inequalities.The inequality involves multiple variables and how the maximum/minimum values of a subset of the numbers compare to the maximum/minimum values of the whole set of numbers.Our main contribution is applying such inequality in inventory management to help estimate the total cost of inventory management, which would allow us to determine the shutdown pointforaspecificcompanyusingthegeneralizationsoftheinequality.Lastly,weshow thatourestimatesarereasonableandproposesomefutureareaswheremoreworkcan be done.
Strict Inequalities for the n-crossing Inequality
In2013,Adamsintroducedthen-crossingnumberofaknotK,denoted by cn(K).Inequalities between the 2-, 3-, 4-, and 5-crossing numbers have been previously established.We prove c9(K)≤c3(K)−2 for all knots Kthat are not the trivial, trefoil, or figure-eightknot.Weshowthisinequalityisoptimalandobtainpreviouslyunknownvalues for c9(K).