The Maximum Area of N-gons within the Intersection Region of Two Congruent Circles
At the 61st National High School Science Fair of Taiwan, the first-rank paper "The Study of the Largest Area of Inscribed Triangle within the Intersection of two circles" was presented. The authors discussed several properties of maximum area of inscribed triangles within intersection regions of two congruent circles. They only claim their results but without providing a rigorous proof. However, we give a proof by showing the convergence of the iteration of finding the largest height. Subsequently, we offer new methods to approach the problems such as the trigonometric identities, Jensen's Inequality to prove the maximum area of triangles and quadrangles within the intersection region of two congruent circles. Finally, we determined the maximum area for the case of n-gons. We conducted further research and discussion on this issue. In the future, we hope to prove why the maximum area of n-gons within the intersection region of two congruent circles occurs when there are two points on the intersection points of the two circles. We aim similar problems in the three-dimensional space, namely the maximum volume of tetrahedron within the intersection of two unit spheres.
Generalized Skolem-type Sequence的相關探討
本研究探討 Skolem sequence之推廣generalized Skolem-type sequence,是否能類比Skolem sequence 探討奇偶性 (parity) 的問題,也就是依照各數字所處位置模重複度 𝑠 所得餘數分類,觀察必不能填滿數列的組合,以找到數列存在的必要條件。接著以奇偶性 (parity) 及密度 (density) ,也就是比較數列位置差最大值與放入數列各數字的位置差總和,找出generalized Skolem sequence 的推廣 generalized Skolem-type sequence 存在的必要條件。 至於充分性,我構造出 hooked (1, 𝑚)-near Skolem sequence 在 𝑛 ≡ 2, 3 (mod 4), 𝑚 ≡ 1 (mod 2) 的情形,並猜想推導出的 hooked (1, 𝑚)-near Skolem sequence 必要條件也具充分性。接著我透過串接 Lanford sequence 的方式,構造出 𝑛 ≥ 3𝑚𝑘 + 1, 𝑚𝑖 ≥ 3𝑚𝑖−1 + 1 ∀ 3 ≤ 𝑖 ≤ 𝑘 的 (𝑚1, 𝑚2, … , 𝑚𝑘)-near Skolem sequence 及 hooked (𝑚1, 𝑚2, … , 𝑚𝑘)-near Skolem se- quence 存在的充分必要條件。
On the Application of Inequalities Containing Sums of Minimum/Maximum of Numbers
Retail inventory management is a crucial part of many businesses due to the high profit associated with it as well as the uncertainty around it, especially for industries with short production cycles and a complex supply chain.Proper management ofretail inventories can lead to decreased inventory costs, prevent spoilage and obsoles- cence, and improve customer satisfaction, all of which lead to increased profits for the company.Inthispaper,wefirstproposeextendingawell-knowninequalityandtry to generalize it to other conditions and similar inequalities.The inequality involves multiple variables and how the maximum/minimum values of a subset of the numbers compare to the maximum/minimum values of the whole set of numbers.Our main contribution is applying such inequality in inventory management to help estimate the total cost of inventory management, which would allow us to determine the shutdown pointforaspecificcompanyusingthegeneralizationsoftheinequality.Lastly,weshow thatourestimatesarereasonableandproposesomefutureareaswheremoreworkcan be done.
從心開始-三角形的四心到各邊距離和
此研究討論三角形𝐴𝐵𝐶的外心、重心、垂心、內心到三邊之距離,並依銳角、直角及鈍角三角形,去比較各距離總和之大小關係及相互之間的關聯性。其主要結果為: 1.用外接圓半徑𝑅及∠𝐴,∠𝐵,∠𝐶表示各心到三邊之距離。 2.設外心、重心、垂心、內心到三邊之距離總和依序為𝑑1, 𝑑2, 𝑑3, 𝑑4 ,其大小關係為: (1)在銳角∆中,𝑑1 ≥ 𝑑2 ≥ 𝑑4 ≥ 𝑑3,僅當正∆ 時,等號成立。 (2)在直角∆中,𝑑1 > 𝑑2 > 𝑑4 > 𝑑3。 (3)在鈍角∆中,𝑑1 > 𝑑2 > 𝑑4 恆成立。𝑑3與𝑑1、𝑑2、𝑑4比較,並無絕對關係,但在等腰鈍角∆,我們給出其大小順序的臨界值。 (4)在鈍角∆中,若最大內角≥ 120° ,則𝑑3 > 𝑑1 > 𝑑2 > 𝑑4。 3.在銳角∆ 及直角∆ 中,等式𝑑2=2/3 𝑑1+1/3 𝑑3和 𝑑2+1/3 𝑑1-1/3 𝑑3-1/3 𝑑4 = 𝑅 恆成立。