Strict Inequalities for the n-crossing Inequality
In2013,Adamsintroducedthen-crossingnumberofaknotK,denoted by cn(K).Inequalities between the 2-, 3-, 4-, and 5-crossing numbers have been previously established.We prove c9(K)≤c3(K)−2 for all knots Kthat are not the trivial, trefoil, or figure-eightknot.Weshowthisinequalityisoptimalandobtainpreviouslyunknownvalues for c9(K).
3D Arithmetic Billiards investigating edge points with a number theoretic approach
The billiard table is a cuboid with integer side lengths. A point-wise ball moves with constant speed along segments making a 45◦ angle with the sides and bounces on these. We allow the ball to start from any of the 8 corners, resulting in a periodic trajectory known as a corner path. The geometry of the path depends on the artihmetic properties of the side lengths (for example if these are pairwise coprime). Points of contact between the ball and edges, known as edge points, are inves- tigated and their characteristics like distribution explicitly described. This generalizes a previous work by Perucca, Reguengo da Sousa and Tronto of University of Luxembourg.
心線相依 The Extensions of Euler Line
此題出處為 Crux Mathematicorum, Vol. 44(4), Apr 2018[1]。已知H為△ABC 的垂心,自A、B與C往對邊̅BC、̅CA與̅AB 作三高,得三垂足為 D、E 與F,從△ABC的三邊往外作矩形,使其寬與三邊上的高成比例,再將這三個矩形相臨的頂點連起來,形成三組三角形。證明這三個三角形的中線會三線共點。事實上這點就是外心。 我將原題延伸為四種建構方法,從△ABC 的三邊往外作平行四邊形,分別連三個外接三角形,考慮其中線、角平分線、中垂線與高,以及三角形的五心。分析三線共點的情形。 本研究最特別之處是在四種建構96種情形中,共有69種共點。其中有7 種情形,當任意點J 配上三中線共點於P時,此時J、重心G與P點三點共線,且̅JG :̅GP=2 :1。當任意點J與垂心重合時,三中線共點於外心,此時這條直線即歐拉線。另外有 11 種情形,當任意點J配上三中線共點於P時,此J、重心G與P點三點共線,且̅JG :̅GP=1: 2。當任意點J與外心重合時,三中線共點於垂心,此時這條直線即歐拉線。且當f1(J,m)=P1,f2 (J , m)=P2,此時P2、P1、重心G與J共線。最特別的是當J與外心重合時, P1 是九點圓的圓心。