全國中小學科展

數學

New Properties of Miquel Point

本研究先觀察著名的密克定理(Miquel theorem)與密克點(Miquel point),我們創新給出了新的研究項目,關注密克點𝑃與密克三角形的頂點所構成直線和原三角形𝐴𝐵𝐶三邊直線的其餘六個交點,這是前人沒有觸及的研究項目,從而定義旁接三角形與衍伸三角形。 我們先針對特殊型(直角)的構圖,發現滿足兩個衍伸三角形的有向面積 [𝐴1𝐵1𝐶1]=±[𝐴2𝐵2𝐶2] 時,𝑃 點形成的軌跡為原三角形的 Kiepert hyperbola 與外接圓,這個是有趣且重要發現,我們也進一步給出其幾何必然性。進一步考慮 [𝐴1𝐵1𝐶1]=𝑟[𝐴2𝐵2𝐶2] 時,則刻劃出 𝑃 點軌跡為圓錐曲線系。在前面的基礎下,再針對一般型(任意角)的構圖,若 𝑃 點位於原三角形外接圓及Kiepert hyperbola 與 Steiner circumellipse 的線性組合曲線上,此時兩個衍伸三角形 𝐴1𝐵1𝐶1 與 𝐴2𝐵2𝐶2 的有向面積比值為定值,且兩者恆為相反數。

The Maximum Area of N-gons within the Intersection Region of Two Congruent Circles

At the 61st National High School Science Fair of Taiwan, the first-rank paper "The Study of the Largest Area of Inscribed Triangle within the Intersection of two circles" was presented. The authors discussed several properties of maximum area of inscribed triangles within intersection regions of two congruent circles. They only claim their results but without providing a rigorous proof. However, we give a proof by showing the convergence of the iteration of finding the largest height. Subsequently, we offer new methods to approach the problems such as the trigonometric identities, Jensen's Inequality to prove the maximum area of triangles and quadrangles within the intersection region of two congruent circles. Finally, we determined the maximum area for the case of n-gons. We conducted further research and discussion on this issue. In the future, we hope to prove why the maximum area of n-gons within the intersection region of two congruent circles occurs when there are two points on the intersection points of the two circles. We aim similar problems in the three-dimensional space, namely the maximum volume of tetrahedron within the intersection of two unit spheres.

連通圖上行走路徑經過邊數期望值之研究

本研究延續自作者前一年的研究「連通圖上行走步數期望值之研究」,原題為在一個六面體中,有一隻螞蟻位於其中一個頂點並沿著邊行走,每當牠走到頂點時就會選擇一條邊繼續行走,且牠前往任何方向之機率皆相同,但不可走回頭路,求螞蟻回到出發點時經過邊數之期望值。本研究將題目延伸出了以下幾個問題,得出結論後並證明。結果如下:Kn (n - complete graph)、任意tree、Cm★Cn、Km★Kn中,螞蟻從其中一點vi出發,第一次走到另一點vj時經過邊數之期望值通式。除了研究不同的圖上點到點經過邊數期望值通式,針對圖論中經常用的距離 (點到點的最短路徑經過邊數) 與點到點的期望長度最大者進行比較,探討在圖上之性質。

廣義佩爾方程式的一些探討

這是一份將近持續四年的研究,而這一年佩爾質數的出現,讓我們的討論「突飛猛進」。 佩爾方程式是形如𝑥2−𝑚𝑦2=1的方程式,其中𝑘不為完全平方數之正整數。我們定義廣義佩爾方程式是形如𝑥2−𝑚𝑦2=𝑛 的方程式。在過去的研究中,我們主要從𝑥2−𝑘𝑦2=𝑝 (𝑘,𝑝 皆為互質的奇質數) 的正整數解開始研究,接著延伸到 𝑥2−𝑘𝑦2=2𝑚𝑝1𝑛1𝑝2𝑛2⋯𝑝𝑗𝑛𝑗,進而得到了解的唯一分解性質。而本次的研究,延續之前的工作,對佩爾質數展開了討論。利用蜈蚣彘,我們成功地發現了一些佩爾質數,猜測出一些可能的結果並證明;同時我們對佩爾質數的生成結構做了相當程度的了解。作為結束,設法利用分析的方法解決的之前的問題,以及對方程式的不可約解,是否存在較低次方根解,給出了必要條件。

圓緣相連—關於忍者通道性質之探討

本作品由2023年IMO的第五題出發,希望探索在忍者通道中的其他性質,首先思考改變每排中放入的球數並觀察規律,進而推廣到三維圓圈塔中的性質,最後使用hyper-cube(超立方體)的情況進行一般化的推廣與構造的優化,完成最小值問題的求解,另外也對於特例部分探索解的總數。

塗色次數期望值之研究

n個圓圈以一維排列所構成圖形中,若指定當中一圓圈塗色時,其左右相鄰圓圈各有1/2機率被塗色,欲求出使得該圖形之指定塗色次數的期望值達最小之最優化塗色方法。本研究共探討了n個圓圈之「直線排列」、「環狀排列」與n個圓圈及m個圓圈之「環狀結合直線排列」等三種圖形。

Utilizing Sparse Optimal Linear Feedback Control to Design Targeted Therapeutic Strategies for Enhancing Gut Microbiome Stability

According to the 2024 American Cancer Risk Survey, one in 24 individuals is at high risk of developing colon cancer. This condition is linked to gut microbiome instability. Consequently, there is a pressing need for a more effective and precise approach to maintaining gut microbiome stability, which this research aims to solve by finding the most crucial bacteria species in maintaining the stability of the gut microbiome through the application of Optimal Linear Feedback Control. Two of its variants being applied in this research are Sparsity Promoting Linear Quadratic Regulator (LQRSP) with a variety range of  (0.05, 44.58, and 49.84) and Linear Quadratic Regulator (LQR) ( = 0) along with other supporting methods; Controllability Gramian and Network Theory (graph analysis). The finding in this research shows that bacteria species Bacteroides hydrogenotrophica, Bacteroides uniformis, Bacteroides vulgaris, Bacteroides thetaiotaomicron, Escherichia lenta, and Dorea formicigenerans have an important role for preventing and medicating a variety of gut-related diseases. This conclusion is reinforced by the analysis conducted using the Controllability Gramian, displaying five of the chosen bacteria with the highest controllability index, which demonstrates that the system can be effectively controlled. This finding suggests a potential for enhancing therapeutic strategies, rendering them more precise and systematic. To gain deeper insights into the relationship between each bacteria and the rationale behind the selection of these bacteria by LQRSP, this study also employs network theory, which successfully elucidates the choice of Bacteroides uniformis despite its low controllability index. Additionally, to further validate the efficacy of these bacteria, the research develops a simulation that compares the controlled system with the uncontrolled system, utilizing two types of disturbances. The results indicate a significant difference in robustness against disturbances between the controlled and uncontrolled systems. The findings from this research can be used as a foundation for a more efficient and systematic intervention strategy findings. By researching gut microbiome composition regulation using a mathematical approach, it opens new opportunities for new method discoveries aiming to increase the health of the gut microbiome which is beneficial for the medical field and prevention of gut related diseases.

Wrong seating around the table

本研究探討在一場圓桌會議中,n人逐一亂序入場找尋各自對應的名牌編號(1~n號)入座,其中1號第一個入場並坐到了k號位,此後入場的人們若發現與自己編號相同的位置是空的,就直接入座;若與自己編號相同的位置被占走了,就以逆時針方向尋找空位入座。在上述的規則下,若共有n 人,且 1 號坐到 k號位的情況,給予與問題相關統計量的組合證明。後續本研究將規則改為1 ~ p號 按照順序進場且皆想坐到 k 號位的前提下,探討了坐錯的人們是怎麼樣的循環和坐錯人數的次數分佈。並多數的研究結果皆與 stirling numbers of the first kind 有相關。 本研究還 探討了共有 n 人,且 1 號坐到 k號位的情況下, 坐錯人數的標準差函數的遞增情況 與對數函數完全曲線相關。

方格裡的秘密—隨機分布的機率探討

本文研究了一個信息完全公開的組合遊戲,探討當一群人被完全隨機的分配到模型裡時,其初始位置與特定位置所形成的包圍關係,並探討最佳的人力分配。本研究通過座標解析與不等關係的代數運算等方法,成功找出獲勝條件對於遊戲雙方的限制,並進一步解決問題。在研究的過程中,也將結論擴展到不同模型,探討不同模型對於遊戲造成的影響,並比較其結論有何區別。

從幾何分析到正n邊形線段n次方和之探討

本研究要探討在兩同心圓,大圓的內接大正五邊形和中心在小圓上移動的小正五邊形在固定邊長、圓半徑的情況下,不論小正五邊形在圓上如何移動,其對應頂點的距離平方和、四次方和為定值以及頂點至對應邊的距離的總和、平方和為定值並試著推廣至正n 邊形並找出它們的定值為何 。