Face Pose Estimation using ResNet50 in the Metaverse
Face pose estimation has many possible applications, ranging from driver attention measurement systems to applications in the metaverse, which this project will be focused on. Rather than using a more traditional landmark-to-pose method where the head pose is estimated via keypoints, our method trains a simple convolutional neural network, using the dataset 300W_LP, where the images are simply inputted into the network. The model is fitted with three fully connected layers that are linked to the each of the three Euler angles (yaw, pitch, and roll), alongside multiple loss functions, which improve the robustness of the network.
Adversarial Attacks Against Detecting Bot Generated Text
With the introduction of the transformer architecture by Vaswani et al. (2017), contemporary Text Generation Models (TGMs) have shown incredible capabilities in generating neural text that, for humans, is nearly indistinguishable from human text (Radford et al., 2019; Zellers et al., 2019; Keskar et al., 2019). Although TGMs have many potential positive uses in writing, entertainment and software development (Solaiman et al., 2019), there is also a significant threat of these models being misused by malicious actors to generate fake news (Uchendu et al., 2020; Zellers et al., 2019), fake product reviews (Adelani et al., 2020), or extremist content (McGuffie & Newhouse, 2020). TGMs like GPT-2 generate text based on a given prompt, which limits the degree of control over the topic and sentiment of the neural text (Radford et al., 2019). However, other TGMs like GROVER and CTRL allow for greater control of the content and style of generated text, which increases its potential for misuse by malicious actors (Zellers et al., 2019; Keskar et al., 2019). Additionally, many state-of-the-art pre-trained TGMs are available freely online and can be deployed by low-skilled individuals with minimal resources (Solaiman et al., 2019). There is therefore an immediate and substantial need to develop methods that can detect misuse of TGMs on vulnerable platforms like social media or e-commerce websites. Several methods have been explored in detecting neural text. Gehrmann et al. (2019) developed the GLTR tool which highlights distributional differences in GPT-2 generated text and human text, and assists humans in identifying a piece of neural text. The other approach is to formulate the problem as a classification task to distinguish between neural text and human text and train a classifier model (henceforth a ‘detector’). Simple linear classifiers on TF-IDF vectors or topology of attention maps have also achieved moderate performance (Solaiman et al., 2019; Kushnareva et al., 2021). Zellers et al. (2019) propose a detector of GROVER generated text based on a linear classifier on top of the GROVER model and argue that the best TGMs are also the best detectors. However, later results by Uchendu et al. (2020) and Solaiman et al. (2019) show that this claim does not hold true for all TGMs. Consistent through most research thus far is that fine-tuning the BERT or RoBERTa language model for the detection task achieves state-of-the-art performance (Radford et al., 2019; Uchendu et al., 2020; Adelani et al., 2020; Fagni et al., 2021). I will therefore be focussing on attacks against a fine-tuned RoBERTa model. Although extensive research has been conducted on detecting generated text, there is a significant lack of research in adversarial attacks against such detectors (Jawahar et al., 2020). However, the present research that does exist preliminarily suggests that neural text detectors are not robust, meaning that the output can change drastically even for small changes in the text input and thus that these detectors are vulnerable to adversarial attacks (Wolff, 2020). In this paper, I extend on Wolff’s (2020) work on adversarial attacks on neural text detectors by proposing a series of attacks designed to counter detectors as well as an algorithm to optimally select for these attacks without compromising on the fluency of generated text. I do this with reference to a fine-tuned RoBERTa detector and on two datasets: (1) the GPT-2 WebText dataset (Radford et al., 2019) and (2) the Tweepfake dataset (Fagni et al., 2021). Additionally, I experiment with possible defences against these attacks, including (1) using count-based features, (2) stylometric features and (3) adversarial training.