Limited Query Black-box Adversarial Attacks in the Real World
We study the creation of physical adversarial examples, which are robust to real-world transformations, using a limited number of queries to the target black-box neural networks. We observe that robust models tend to be especially susceptible to foreground manipulations, which motivates our novel Foreground attack. We demonstrate that gradient priors are a useful signal for black-box attacks and therefore introduce an improved version of the popular SimBA. We also propose an algorithm for transferable attacks that selects the most similar surrogates to the target model. Our black-box attacks outperform state-of-the-art approaches they are based on and support our belief that the concept of model similarity could be leveraged to build strong attacks in a limited-information setting.
A Person Re-identification based Misidentification-proof Person Following Service Robot
Two years ago, I attended a robot contest, in which one of the missions required the robot to follow the pedestrian to complete the task. At that time, I used their demo program to complete the task. Not long after, I found two main issues: 1. The program follows the closest point read by the depth camera, which if I walk close to a wall next to, the robot may likely ‘follow’ the wall. 2. Not to mention if another pedestrian crosses between the robot and the target. Regarding these two issues, I decided to improve it. We’ve designed a procedure of using YOLO Object Detection and Person re-identification to re-identify the target for continuous following.
Development of an Android Application for Triage Prediction in Hospital Emergency Departments
Triage is the process by which nurses manage hospital emergency departments by assigning patients varying degrees of urgency. While triage algorithms such as the Emergency Severity Index (ESI) have been standardized worldwide, many of them are highly inconsistent, which could endanger the lives of thousands of patients. One way to improve on nurses’ accuracy is to use machine learning models (ML), which can learn from past data to make predictions. We tested six ML models: random forest, XGBoost, logistic regression, support vector machines, k-nearest neighbors, and multilayer perceptron. These models were tasked with predicting whether a patient would be admitted to the intensive care unit (ICU), another unit in the hospital, or be discharged. After training on data from more than 30,000 patients and testing using 10-fold cross-validation, we found that all six models outperformed ESI. Of the six, the random forest model achieved the highest average accuracy in predicting both ICU admission (81% vs. 69% using ESI; p<0.001) and hospitalization (75% vs. 57%; p<0.001). These models were then added to an Android application, which would accept patient data, predict their triage, and then add them to a priority-ordered waiting list. This approach may offer significant advantages over conventional triage: mainly, it has a higher accuracy than nurses and returns predictions instantaneously. It could also stand-in for triage nurses entirely in disasters, where medical personnel must deal with a large influx of patients in a short amount of time.
Enhancement of Online Stochastic Gradient Descent using Backward Queried Images
Stochastic gradient descent (SGD) is one of the preferred online optimization algorithms. However, one of its major drawbacks is its predisposition to forgetting previous data when optimizing through a data stream, also known as catastrophic interference. In this project, we attempt to mitigate this drawback by proposing a new low-cost approach which incorporates backward queried images with SGD during online training. Under this new approach, we propose that for every new training sample through the data stream, the neural network is optimized using the corresponding backward queried image from the initial dataset. After compiling the accuracy of the proposed method and SGD under a data-stream of 50,000 training cases with 10,000 test cases and comparing our algorithm to SGD, we see substantial improvements in the performance of the neural network with two different MNIST datasets (Fashion and Kuzushiji), classifying the MNIST datasets at a high accuracy for the mean, minimum, lower quartile, median, and upper quartile, while maintaining lower standard deviation in performance, demonstrating that our proposed algorithm can be a potential alternative to online SGD.
Method of prosthetic vision
This work is devoted to solving the problem of orientation in the space of visually impaired people. Working on the project, a new way of transmitting visual information through an acoustic channel was invented. In addition, was developed the device, which uses distance sensors to analyze the situation around a user. Thanks to the invented algorithm of transformation of the information about the position of the obstacle into the sound of a certain tone and intensity, this device allows the user to transmit subject-spatial information in real time. Currently, the device should use a facette locator made of 36 ultrasonic locators grouped in 12 sectors by the azimuth and 3 spatial cones by the angle. Data obtained in such a way is converted into its own note according to the following pattern : the angle of the place corresponds to octave, the azimuth corresponds to the note and the distance corresponds to the volume. The choice of the notes is not unambiguous. However, we used them for the reason that over the centuries, notes have had a felicitous way of layout on the frequency range and on the logarithmic scale. Therefore, the appearance of a new note in the total signal will not be muffled by a combination of other notes. Consequently, a blind person, moving around the room with the help of the tone and volume of the sound signals, will be able to assess the presence and location of all dangerous obstacles. After theoretical substantiation of the hypothesis and analysis of the available information, we started the production of prototypes of the devices that would implement the idea of transmitting information via the acoustic channel.
A Person Re-identification based Misidentification-proof Person Following Service Robot
Two years ago, I attended a robot contest, in which one of the missions required the robot to follow the pedestrian to complete the task. At that time, I used their demo program to complete the task. Not long after, I found two main issues: 1. The program follows the closest point read by the depth camera, which if I walk close to a wall next to, the robot may likely ‘follow’ the wall. 2. Not to mention if another pedestrian crosses between the robot and the target. Regarding these two issues, I decided to improve it. We’ve designed a procedure of using YOLO Object Detection and Person re-identification to re-identify the target for continuous following.