Development of an Android Application for Triage Prediction in Hospital Emergency Departments
Triage is the process by which nurses manage hospital emergency departments by assigning patients varying degrees of urgency. While triage algorithms such as the Emergency Severity Index (ESI) have been standardized worldwide, many of them are highly inconsistent, which could endanger the lives of thousands of patients. One way to improve on nurses’ accuracy is to use machine learning models (ML), which can learn from past data to make predictions. We tested six ML models: random forest, XGBoost, logistic regression, support vector machines, k-nearest neighbors, and multilayer perceptron. These models were tasked with predicting whether a patient would be admitted to the intensive care unit (ICU), another unit in the hospital, or be discharged. After training on data from more than 30,000 patients and testing using 10-fold cross-validation, we found that all six models outperformed ESI. Of the six, the random forest model achieved the highest average accuracy in predicting both ICU admission (81% vs. 69% using ESI; p<0.001) and hospitalization (75% vs. 57%; p<0.001). These models were then added to an Android application, which would accept patient data, predict their triage, and then add them to a priority-ordered waiting list. This approach may offer significant advantages over conventional triage: mainly, it has a higher accuracy than nurses and returns predictions instantaneously. It could also stand-in for triage nurses entirely in disasters, where medical personnel must deal with a large influx of patients in a short amount of time.
Development of an autonomous Search and Rescue Drone
The number of natural disasters has risen significantly in recent years, and with climate change there is no end in sight. Consequently, the demands on rescue forces around the world are increasing. For this reason, I asked myself what I can do to improve the work of rescue teams. Advances in artificial intelligence and drone technology enable new possibilities for problem solving. Based on the technological advances mentioned above, an autonomous Search and Rescue drone was developed as part of this project. The system assists rescue workers in searching for survivors of natural disasters or missing people. This paper also suggests a method for prioritizing survivors based on their vitality. The system was implemented using a commercial Parrot ANAFI drone and Python. The software was tested on a simulated drone. To simplify the development, the whole system was divided into the following subsystems: Navigation System, Search System and Mission Abort System. These subsystems were tested independently. The testing of solutions and new concepts were performed using smaller test programs on the simulated drone and finally on the physical drone. The Search and Rescue system was successfully developed. The person detection system can detect humans and distinguish them from the environment. Furthermore, based on the movements of a person, the system can distinguish whether the person is a rescuer or a victim. In addition, an area to be flown over can be defined. If something goes wrong during the mission, the mission can be aborted by the Mission Abort System. In the simulation, the predefined area can successfully be flown over. Unfortunately, controlling the physical drone does not work. It stops in the air after takeoff due to the firmware of the drone. It does not change the flight state of the drone, which results in all subsequent commands from the system being ignored. This paper shows that artificial intelligence and drone technologies can be combined to deliver better rescue services. The same system can be applied to other applications.
A.N.T.s: Algorithm for Navigating Traffic System in Automated Warehouses
According to CNN Indonesia 2020, the demand for e-Commerce in Indonesia has nearly doubled during this pandemic. This surge in demand calls for a time-efficient method for warehouse order-picking. One approach to achieve that goal is by incorporating automation in their warehouse systems. Globally, the market of warehouse robotics is expected to reach 12.6 billion USD by 2027 (Data Bridge Market Research, 2020). In this research, the warehouse system studied would utilize AMR (Autonomous Mobile Robots) to lift and deliver movable shelf units to the packing station where workers are at. This research designed a heuristic algorithm called A.N.T.s (Algorithm for Navigating Traffic System) to conduct task assigning and pathfinding for AMR in the automated warehouse. The warehouse layout was drawn as a two-dimensional map in grids. When an order is placed, A.N.T.s would assign the task to a robot that would require the least amount of time to reach the target shelf. A.N.T.s then conducted pathfinding heuristically using Manhattan Distance. A.N.T.s would help the robot to navigate its way to the target shelf unit, lift the shelf and bring it to the designated packing station. A.N.T.s algorithm was tested in various warehouse layouts and with a varying number of AMRs. Comparison against the commonly used Djikstra’s algorithm was also conducted (Shaikh and Dhale, 2013). Results show that the proposed A.N.T.s algorithm could execute 100 orders in a 27x23 layout with five robots 9.96 times faster than Dijkstra with no collisions. The algorithm is also shown to be able to help assign tasks to robots and help them find short paths to navigate their ways to the shelf units and packing stations. A.N.T.s could navigate traffic to avoid deadlocks and collisions in the warehouse with the aid of lanes and directions.
A.N.T.s: Algorithm for Navigating Traffic System in Automated Warehouses
According to CNN Indonesia 2020, the demand for e-Commerce in Indonesia has nearly doubled during this pandemic. This surge in demand calls for a time-efficient method for warehouse order-picking. One approach to achieve that goal is by incorporating automation in their warehouse systems. Globally, the market of warehouse robotics is expected to reach 12.6 billion USD by 2027 (Data Bridge Market Research, 2020). In this research, the warehouse system studied would utilize AMR (Autonomous Mobile Robots) to lift and deliver movable shelf units to the packing station where workers are at. This research designed a heuristic algorithm called A.N.T.s (Algorithm for Navigating Traffic System) to conduct task assigning and pathfinding for AMR in the automated warehouse. The warehouse layout was drawn as a two-dimensional map in grids. When an order is placed, A.N.T.s would assign the task to a robot that would require the least amount of time to reach the target shelf. A.N.T.s then conducted pathfinding heuristically using Manhattan Distance. A.N.T.s would help the robot to navigate its way to the target shelf unit, lift the shelf and bring it to the designated packing station. A.N.T.s algorithm was tested in various warehouse layouts and with a varying number of AMRs. Comparison against the commonly used Djikstra’s algorithm was also conducted (Shaikh and Dhale, 2013). Results show that the proposed A.N.T.s algorithm could execute 100 orders in a 27x23 layout with five robots 9.96 times faster than Dijkstra with no collisions. The algorithm is also shown to be able to help assign tasks to robots and help them find short paths to navigate their ways to the shelf units and packing stations. A.N.T.s could navigate traffic to avoid deadlocks and collisions in the warehouse with the aid of lanes and directions.