全國中小學科展

工程學

超音波霧化降溫之研究探討

本研究(超音波霧化降溫研究)由二實驗組成。實驗一主要針對超音波霧化器(以下簡稱霧化器)之造霧性能進行探討;實驗二則為霧化器之降溫應用。實驗一以改良傳統造霧方式,進而維持最佳造霧效果為主。由於先前的霧化方式是直接放置霧化器於水面,致使最佳霧化水深因霧氣蒸散、水位下降而無法維持;所以在實驗一裡,我們針對霧化器的使用設計一套「漂浮造霧法」:本法運用浮體使霧化器懸於水面,和水面等起伏,使霧化器底部距水面高度不變,藉以維持最佳造霧水深、造霧效果。實驗二乃霧化降溫之探討。本實驗在相同的霧化量下,操縱風速和接觸表面積的差異;利用霧、氣接觸面積與蒸散速率呈正向關係的原理,找出最佳的降溫條件。同時,也期待在兼顧環保的前提下,將之應用於未來開放空間的降溫。The research(Heat Control by Supersonic Vaporization)includes two experiments. One is focused on atomized effect of Supersonic Vaporization(so-called Atomizer); the other is about applying atomizer to temperature decrease. Exp.1 adapts formal way of atomization. Since previous way of atomization is to put atomizer directly on the water, making the change of atomizer’s distance from water as water evaporates, Exp.1 creates a way called “Floating”. In Floating, atomizer is suspended in a float; constantly keeps the bottom of atomizer from same distance from surface of water. Thus, no matter how much volume of water is evaporated, the best depth of water for atomization and also, the best atomized condition, could stay. Exp2 inquires in relation between atomization and temperature decrease. In Exp2, the atomized volume is fixed, while wind speed and air-contact area are mastered elements. By the theory that, “the wider contact area is, the more efficiently water evaporates,” we could manage out the best condition in temperature decrease. In that way, with the theory practiced, this research, considering environmental case, is supposed to be applied to open-air area one day.

High Speed Size-exclusion Chromatography (SEC) Using Spherical Meso-structured Cellular Foam (MCF)

Size-exclusion chromatography (SEC) is often used to determine the molecular weights of and separate polymers and proteins. The porous packing of the SEC column effects the separation of molecules, with larger molecules eluting earlier. Interest in high-speed SEC for larger molecules has been building, especially for combinatorial polymerization reactions and online SEC-MS applications. Mechanical stability of the packing, which siliceous materials have more of than polymeric ones, therefore needs to be improved. Several silicas have been explored but limited pore sizes and pore volumes have restricted their usage to separating small molecules. Siliceous MCF templated using oil-in-water microemulsions has good potential for SEC packing because it has ultralarge pore size (20-50 nm), high porosity and sturdy skeleton. However conventional MCF consists of highly irregular particles and hence cannot be used as packing.

超越極限的越野蟑螂車

在本研究中,我模仿蟑螂的行走方式,來製作可以在各種地形以不減速的方式前進的機器車。在偶然機會下,我觀察到,蟑螂可以順利爬越米堆,因此對蟑螂的運動方式感到興趣。我用微型網路攝影機拍攝及觀察蟑螂的行走方式。發現蟑螂在快速行走時,是以三隻腳為一組,六腳兩組交互進行前進的動作。由於三點構成一平面,使蟑螂在快速移動時,相當的平穩。我將此原理融入蟑螂車的設計,並根據這個原理,利用舊玩具四驅車改裝成「六驅車」,成功的製作出模仿六足昆蟲行走方式且可以在各種地形順利前進的機器車。為了更客觀的比較,我應用樂高積木的馬達組合,製作了一部純轉動前進的六輪傳動車,及另一部轉動兼走動的六輪蟑螂車。並利用微電腦控制兩種車維持相同的驅動速度前進(93.33 rpm),於各種路面實地測試,證實蟑螂車越野的性能的確強很多。未來若可以將六足昆蟲行走方式的概念應用到汽車製造,車輛的越野性能必然大幅提昇。\r \r In this research, I developed a six-wheel driving vehicle simulating the movement of cockroach. The resultant motion machine can un-intermittedly run on terrains without speeding down. Occasionally, I observed that the cockroaches can crossover a heap of rice. Therefore, I was very interested in and eager to learn how cockroach runs. I recorded the movements of cockroaches by using mini web camera and analyzed the moving characteristics of cockroaches. It was discovered that the cockroach marches quickly by interchanging two groups of foot in which each group consists of three feet. As a table can be supported by three legs, the cockroach runs steadily and rapidly. I have designed a motocross vehicle based on the mechanism of the way that cockroach runs. A six-wheel driving car is constructed by modifying four-wheel driving toy cars. By simulating the motion complex of six-foot insects, the six-wheel driving car turns out to be an all-terrain vehicle. To be more objective in comparison, I built two types of six-wheel driving cars by utilizing the LEGO TECHNIC motor building set: one with regular and synchronous rotation, and the other one with eccentric shaft rotation emulating cockroach marching movement. I applied a microprocessor to control the motors in order to maintain the same driving speed (93.33 rpm) for both cars during the road test. The experimental results show that the proposed cockroach motocross car performs superiorly especially for the rugged terrain. In the future, the off-road capability of a jeep can be improved by introducing the concept of six-foot insect movement to vehicle design.

BALANCE CONTROLLER(B.CON)

Balance Controller or B. Con is the latest millennium innovation that is very safe and effective in solving balancing problem of electrical equipments and furniture caused by uneven surfaces. This system includes syringe, liquid, and control panel. It is operated manually with the help of an indicator liquid B. Con does not only solve the balancing problem but it is also equipment that could prolong the durability of the electrical equipment or furniture.

節能減碳-波浪發電機模型之創作與應用

隨著全球石油能源短缺,世界各國無不積極尋求永續開發且無公害污染之能源方案,而利用海洋能量發電的形式已成為世界諸國積極研究之重要課題。本研究利用近海岸浮體式波浪發電設計,並利用波浪理論推導與波浪實境測試之方式,創作出在波浪中之發電系統。發電過程為波浪推動浮體,浮體拉動水下的掛重移動,透過掛重上的橡膠管經由摩擦力效應拉動波浪發電機模型的旋轉輪,此刻旋轉輪的轉動與波浪的波高、週期產生連動效應,進而轉換擷取波浪能量,並利用此波浪發電方式,設計研發出『危險水域波浪警示燈』模型,且能在海中真實運作良好成功。

氣體式毒氣淨化器

由於一氧化碳之毒性氣體無色無味且不易發現,對我們的生活造成嚴重的威脅,本作品建構出一套可發布警報、能在極短的時間轉化一氧化碳的毒氣淨化器,也進而說明其獨特性與前瞻性。 \r 本研究的核心,在於室溫下能啟動金觸媒的轉化機制,亦針對平常少被討論、以含浸法製作的金觸媒加以分析和提升,發現利用NH4OH 鹼溶液處理方式並以573K 的O2?燒處理活化觸媒,能有效提升1%Au/Al2O3觸媒對CO+O2的反應活性。使用相同製備方式在Au/TiO2觸媒上於250K 即可達到100%的CO 轉化率。創造一個簡易的流程來製備高活性的觸媒,其作用活性的範圍溫度也相當廣。 \r 本淨化器在實驗中的運作狀況下,能完全轉換一氧化碳含量至低於中毒安全標準內,本系統還設計一道封閉閘門,有利於金觸媒的活性封存。 \r 本作品具有較低成本的觸媒量產流程與材料,觸媒本身也可回收後再活化,此能更符合觸媒市場需要;機體器材替換容易、安全性高等能有效避免中毒意外的發生。

The Titanium Dioxide Toilet Disinfectant

This project aims to improve the quality of toilet hygiene. The product designed should fulfill the requirements of being an environmentally friendly, user friendly and economical toilet seat system which guarantees the safety and hygiene of the toilet. This project also aims to discover the efficiency of the toilet seat system in eliminating pathogens through conducting various experiments.\r In this project, the photocatalytic property of titanium dioxide is applied. When titanium dioxide is under exposure to ultraviolet radiation, they generate free radicals, which are efficient oxidizers of organic substances. Also, research has shown that the safest ultraviolet light used will be UVA. Thus, by using titanium dioxide paint under exposure to ultraviolet light to oxidize pathogens and toxins, the aims will be achieved. Other than that, experiments will be conducted to explore the efficiency of titanium dioxide under exposure to UV radiation in eliminating pathogens by counting the number of bacteria on the toilet seat system after different time intervals the seat system has been turned on.\r The procedure of constructing the product includes drafting the product, purchasing the appropriate apparatus and materials, constructing the prototype, and checking if the product fits the goals set. Lastly, improving the design based on the flaws found during the checking procedure, as well as checking the product to see if it fits the original goals set.\r The procedure of the experiments aimed to explore the efficiency of titanium dioxide under exposure to UV radiation in eliminating pathogens conducted includes\r counting the number of bacteria on the toilet seat system after different time intervals by inoculation of bacteria on the agar plates.\r Test results showed that the number of bacteria had a steady and notable decline after different time intervals. Results also showed that bacteria would be thoroughly terminated after the system had been turned on for at most one hour. The information was then used to set the delay timer to restrict the amount of time the ultraviolet lamp was turned on to save energy.\r Moreover, the toilet seat system has also been improved so that it will complete the automatic cleaning procedure even without the user lowering the toilet seat. This improvement was made so that the product could be more convenient to toilet users.\r The system also deodorizes the toilet as the oxidization of bacteria and organic substances reduces the putrid odor released by them when they carry out chemical reactions.\r In conclusion, the project succeeds in accomplishing the goals set and is capable of improving the quality of toilet hygiene, especially in common households. The project is also successful in finding out that the toilet seat system is efficient in eliminating pathogens.

IF鋼在不同酸液中腐蝕行為之探討

IF鋼在鹽酸溶液中之腐蝕速度隨鹽酸濃度之增加而增加。12M之硝酸溶液對IF鋼具最強腐蝕性,而最低(0.1M)及最高(16M)濃度之硝酸溶液對IF鋼之腐蝕性則相對較弱。硫酸對IF鋼之腐蝕速度則由低濃度至高濃度呈現極大變化,當硫酸濃度由0.1M漸增至3M時腐蝕速度亦隨之增加,爾後腐蝕速率減小,至硫酸濃度由8M時反而呈現極大之重量增加。由於表面腐蝕層不適於XRD分析,故由EDS結合FTIR分析得知H?SO?/8M-24hrs.情況下試片表面之腐蝕層為Fe?O?。由SEM觀察發現腐蝕速率較大之條件,如HCI/12M-1min.及HNO?/12M-1min.處理過後,試片表面甚至出現具晶體對稱性之蝕恐。由本研究之初步成果發現:是溫下可以利用中等濃度(如8M)之硫酸液來處理鋼鐵,使之表面生成一緻密之氧化鐵(Fe?O?),達到防蝕之效果。IF (interstitials free) steel was processed in various aqueous acid solutions to observe the corrosion behavior. The corrosion rate of IF steel in HCI(aq) increases with the concentration of HCI(aq). HNO?(aq) with concentration of 12M was observed to be the most aggressive for IF steel. The corrosion rate of IF steel in H?SO? solution increases from 0.1M to 3M and then decreases gradually with the concentration. A large amount of weight gain even observed when the concentration was 8M. The protective layer produced during H?SO?/8M-24hurs. treatment was analyzed to be Fe?O? by using SEM (Scanning Electron Microscope), EDS (Energy Dispersive Spectroscopy) and FTIR (Fourier Transform infrared). Etch pits with crystallographic symmetry were observed on the specimens treated with conditions HCI/12M-imin. and HNO?/12M-1min. Processing condition H?SO?/8M-24hrs. could be employed in corrosion prevention for IF steel under ambient environment.

材料新國界-介電陶瓷之電容器

本研究以高頻阻抗分析儀,針對自製的電容器,以不同比率的三氧化二鐵加二氧化矽混合後所製成的電容器,對頻率、電容直及正切損耗能量直從事研究。實驗結果發現,在低頻率直到60Hz以內,其 Cp及D值變化非常大,明顯的下降,60Hz到1000Hz Cp及D值變化很小。由參考資料中電容器中的損失因數是介電材料是否適合於絕緣材料用途之最基本的準則,一般均希望具有低介電率。即使在最小的空間內也希望有高電容值,如電視、收音機中在介電材料的高頻應用。是故我們所製作的電容器以二氧化矽添加三氧化二鐵後高頻值其Cp值、D值較小,是適合於高頻需求的應用上。We report on the study of high frequency dielectric spetra. On the capacitance, it is made by mnyself. At various mixed ratio value of Fe?O? pius Sio?. In order to understand the frequency capacitance value Cp and tangent loss energy analysis D. The results of our work provide a large of low frequency in o Hz TO 60 Hz in Cp and D. It is obviously descend a small various frequence is 60 Hz to 1000Hz. From reference, we know capacitance energy loss factor is a purpose of suitable an insulator rule. In dielectric constant. We hope a low dielectric value and high capacitance. Even it is a small distance. For example TV. Radio. Etc. it is used to high frequency. So we made a capacitance in difference of Fe?o? pius Sio?. To provide the Cp and D. the value is small. So it can be used in high frequence demand.

Wind Power

My school requires year 13 students to complete a year long project of a topic of their choice, culminating in the presentation of a thesis, a display and speech to a public audience. Many different topics appealed, but in the end I decided to build a micro wind-turbine. I have always been fascinated with mechanics, mathematics, engineering, aerodynamics and electricity. A wind turbine is a mixture of these technologies, with the overall goal of electricity production. In a world that is starting to see the true costs of fossil fuels, renewable energy seems to be increasingly popular and the demand for electricity is always growing.\r I was aware that building a wind-turbine from the foundations up wouldn’t be easy. Many of the experts I contacted in the early days cautioned me against trying such a complex thing in one year, at the same time as completing a full Year 13 course. There were, however, people prepared to support me. Michael Lawley, who builds micro wind turbines in New Plymouth was very helpful, just full of priceless knowledge and gave me a few basic parts to start with. The knowledge gained from Doug Clark, who also builds his own 11 kW wind turbines, was such an inspiration. Later I had practical help from Wilson Springford and Darron Matthews.\r I investigated and documented the history of and current state of wind technology, as well as my own experience and learning in the design, construction and testing process. I thought it would be interesting to find out how the electrical and mechanical side works.\r The generator, a washing machine motor, needed to be completely rewired, and converted to DC (direct current) from AC (alternating current). I built my own 3-phase AC to DC converter.\r Other parts like the disc brakes and bearings had to be found. The rest was hand-made and every part, to a certain extent, had to be modified. Probably more than twenty braking system design attempts led to the final decision to incorporate the wind-activated hydraulic disc brake where the wind paddle starts to ease the brake on over a certain wind speed.\r I studied the dynamics of wind turbine blades, their shape, the material they were made from and how this affected their performance. The decision to make my own blades helped me gain a great sense of achievement and knowledge of blade design. I found some New Zealand made 100% recycled plastic pipe, an added bonus because I wanted to have minimal environmental impact. I designed the turbine with three blades to give better starting torque along with a lower top speed, perfect for how I wired the generator.\r I designed the swivel, the part of the wind turbine that enables the power cables to get from the turbine down the tower without twisting up and has the job of carrying the whole turbine, which is mostly made from recycled aluminium. The steel and bearings used to create the swivel were all second-hand parts and materials. The power from the turbine passes through the swivel into the cables and down the tower. The main mast of the tower is a little over 4.7 metres and pivots on two shorter supporting poles which go down around 2.6 metres to the bottom of the reinforced concrete foundation.\r I managed to, design and construct an operational prototype micro wind-turbine, incorporating recycled and recyclable materials as much as possible, with the end result surpassing all expectations.