超音波霧化降溫之研究探討
本研究(超音波霧化降溫研究)由二實驗組成。實驗一主要針對超音波霧化器(以下簡稱霧化器)之造霧性能進行探討;實驗二則為霧化器之降溫應用。實驗一以改良傳統造霧方式,進而維持最佳造霧效果為主。由於先前的霧化方式是直接放置霧化器於水面,致使最佳霧化水深因霧氣蒸散、水位下降而無法維持;所以在實驗一裡,我們針對霧化器的使用設計一套「漂浮造霧法」:本法運用浮體使霧化器懸於水面,和水面等起伏,使霧化器底部距水面高度不變,藉以維持最佳造霧水深、造霧效果。實驗二乃霧化降溫之探討。本實驗在相同的霧化量下,操縱風速和接觸表面積的差異;利用霧、氣接觸面積與蒸散速率呈正向關係的原理,找出最佳的降溫條件。同時,也期待在兼顧環保的前提下,將之應用於未來開放空間的降溫。The research(Heat Control by Supersonic Vaporization)includes two experiments. One is focused on atomized effect of Supersonic Vaporization(so-called Atomizer); the other is about applying atomizer to temperature decrease. Exp.1 adapts formal way of atomization. Since previous way of atomization is to put atomizer directly on the water, making the change of atomizer’s distance from water as water evaporates, Exp.1 creates a way called “Floating”. In Floating, atomizer is suspended in a float; constantly keeps the bottom of atomizer from same distance from surface of water. Thus, no matter how much volume of water is evaporated, the best depth of water for atomization and also, the best atomized condition, could stay. Exp2 inquires in relation between atomization and temperature decrease. In Exp2, the atomized volume is fixed, while wind speed and air-contact area are mastered elements. By the theory that, “the wider contact area is, the more efficiently water evaporates,” we could manage out the best condition in temperature decrease. In that way, with the theory practiced, this research, considering environmental case, is supposed to be applied to open-air area one day.
High Speed Size-exclusion Chromatography (SEC) Using Spherical Meso-structured Cellular Foam (MCF)
Size-exclusion chromatography (SEC) is often used to determine the molecular weights of and separate polymers and proteins. The porous packing of the SEC column effects the separation of molecules, with larger molecules eluting earlier. Interest in high-speed SEC for larger molecules has been building, especially for combinatorial polymerization reactions and online SEC-MS applications. Mechanical stability of the packing, which siliceous materials have more of than polymeric ones, therefore needs to be improved. Several silicas have been explored but limited pore sizes and pore volumes have restricted their usage to separating small molecules. Siliceous MCF templated using oil-in-water microemulsions has good potential for SEC packing because it has ultralarge pore size (20-50 nm), high porosity and sturdy skeleton. However conventional MCF consists of highly irregular particles and hence cannot be used as packing.
超越極限的越野蟑螂車
在本研究中,我模仿蟑螂的行走方式,來製作可以在各種地形以不減速的方式前進的機器車。在偶然機會下,我觀察到,蟑螂可以順利爬越米堆,因此對蟑螂的運動方式感到興趣。我用微型網路攝影機拍攝及觀察蟑螂的行走方式。發現蟑螂在快速行走時,是以三隻腳為一組,六腳兩組交互進行前進的動作。由於三點構成一平面,使蟑螂在快速移動時,相當的平穩。我將此原理融入蟑螂車的設計,並根據這個原理,利用舊玩具四驅車改裝成「六驅車」,成功的製作出模仿六足昆蟲行走方式且可以在各種地形順利前進的機器車。為了更客觀的比較,我應用樂高積木的馬達組合,製作了一部純轉動前進的六輪傳動車,及另一部轉動兼走動的六輪蟑螂車。並利用微電腦控制兩種車維持相同的驅動速度前進(93.33 rpm),於各種路面實地測試,證實蟑螂車越野的性能的確強很多。未來若可以將六足昆蟲行走方式的概念應用到汽車製造,車輛的越野性能必然大幅提昇。\r \r In this research, I developed a six-wheel driving vehicle simulating the movement of cockroach. The resultant motion machine can un-intermittedly run on terrains without speeding down. Occasionally, I observed that the cockroaches can crossover a heap of rice. Therefore, I was very interested in and eager to learn how cockroach runs. I recorded the movements of cockroaches by using mini web camera and analyzed the moving characteristics of cockroaches. It was discovered that the cockroach marches quickly by interchanging two groups of foot in which each group consists of three feet. As a table can be supported by three legs, the cockroach runs steadily and rapidly. I have designed a motocross vehicle based on the mechanism of the way that cockroach runs. A six-wheel driving car is constructed by modifying four-wheel driving toy cars. By simulating the motion complex of six-foot insects, the six-wheel driving car turns out to be an all-terrain vehicle. To be more objective in comparison, I built two types of six-wheel driving cars by utilizing the LEGO TECHNIC motor building set: one with regular and synchronous rotation, and the other one with eccentric shaft rotation emulating cockroach marching movement. I applied a microprocessor to control the motors in order to maintain the same driving speed (93.33 rpm) for both cars during the road test. The experimental results show that the proposed cockroach motocross car performs superiorly especially for the rugged terrain. In the future, the off-road capability of a jeep can be improved by introducing the concept of six-foot insect movement to vehicle design.
The Titanium Dioxide Toilet Disinfectant
This project aims to improve the quality of toilet hygiene. The product designed should fulfill the requirements of being an environmentally friendly, user friendly and economical toilet seat system which guarantees the safety and hygiene of the toilet. This project also aims to discover the efficiency of the toilet seat system in eliminating pathogens through conducting various experiments.\r In this project, the photocatalytic property of titanium dioxide is applied. When titanium dioxide is under exposure to ultraviolet radiation, they generate free radicals, which are efficient oxidizers of organic substances. Also, research has shown that the safest ultraviolet light used will be UVA. Thus, by using titanium dioxide paint under exposure to ultraviolet light to oxidize pathogens and toxins, the aims will be achieved. Other than that, experiments will be conducted to explore the efficiency of titanium dioxide under exposure to UV radiation in eliminating pathogens by counting the number of bacteria on the toilet seat system after different time intervals the seat system has been turned on.\r The procedure of constructing the product includes drafting the product, purchasing the appropriate apparatus and materials, constructing the prototype, and checking if the product fits the goals set. Lastly, improving the design based on the flaws found during the checking procedure, as well as checking the product to see if it fits the original goals set.\r The procedure of the experiments aimed to explore the efficiency of titanium dioxide under exposure to UV radiation in eliminating pathogens conducted includes\r counting the number of bacteria on the toilet seat system after different time intervals by inoculation of bacteria on the agar plates.\r Test results showed that the number of bacteria had a steady and notable decline after different time intervals. Results also showed that bacteria would be thoroughly terminated after the system had been turned on for at most one hour. The information was then used to set the delay timer to restrict the amount of time the ultraviolet lamp was turned on to save energy.\r Moreover, the toilet seat system has also been improved so that it will complete the automatic cleaning procedure even without the user lowering the toilet seat. This improvement was made so that the product could be more convenient to toilet users.\r The system also deodorizes the toilet as the oxidization of bacteria and organic substances reduces the putrid odor released by them when they carry out chemical reactions.\r In conclusion, the project succeeds in accomplishing the goals set and is capable of improving the quality of toilet hygiene, especially in common households. The project is also successful in finding out that the toilet seat system is efficient in eliminating pathogens.
Wind Power
My school requires year 13 students to complete a year long project of a topic of their choice, culminating in the presentation of a thesis, a display and speech to a public audience. Many different topics appealed, but in the end I decided to build a micro wind-turbine. I have always been fascinated with mechanics, mathematics, engineering, aerodynamics and electricity. A wind turbine is a mixture of these technologies, with the overall goal of electricity production. In a world that is starting to see the true costs of fossil fuels, renewable energy seems to be increasingly popular and the demand for electricity is always growing.\r I was aware that building a wind-turbine from the foundations up wouldn’t be easy. Many of the experts I contacted in the early days cautioned me against trying such a complex thing in one year, at the same time as completing a full Year 13 course. There were, however, people prepared to support me. Michael Lawley, who builds micro wind turbines in New Plymouth was very helpful, just full of priceless knowledge and gave me a few basic parts to start with. The knowledge gained from Doug Clark, who also builds his own 11 kW wind turbines, was such an inspiration. Later I had practical help from Wilson Springford and Darron Matthews.\r I investigated and documented the history of and current state of wind technology, as well as my own experience and learning in the design, construction and testing process. I thought it would be interesting to find out how the electrical and mechanical side works.\r The generator, a washing machine motor, needed to be completely rewired, and converted to DC (direct current) from AC (alternating current). I built my own 3-phase AC to DC converter.\r Other parts like the disc brakes and bearings had to be found. The rest was hand-made and every part, to a certain extent, had to be modified. Probably more than twenty braking system design attempts led to the final decision to incorporate the wind-activated hydraulic disc brake where the wind paddle starts to ease the brake on over a certain wind speed.\r I studied the dynamics of wind turbine blades, their shape, the material they were made from and how this affected their performance. The decision to make my own blades helped me gain a great sense of achievement and knowledge of blade design. I found some New Zealand made 100% recycled plastic pipe, an added bonus because I wanted to have minimal environmental impact. I designed the turbine with three blades to give better starting torque along with a lower top speed, perfect for how I wired the generator.\r I designed the swivel, the part of the wind turbine that enables the power cables to get from the turbine down the tower without twisting up and has the job of carrying the whole turbine, which is mostly made from recycled aluminium. The steel and bearings used to create the swivel were all second-hand parts and materials. The power from the turbine passes through the swivel into the cables and down the tower. The main mast of the tower is a little over 4.7 metres and pivots on two shorter supporting poles which go down around 2.6 metres to the bottom of the reinforced concrete foundation.\r I managed to, design and construct an operational prototype micro wind-turbine, incorporating recycled and recyclable materials as much as possible, with the end result surpassing all expectations.