Wetting Tracing Paper—Fiber Porous Media Curling Behavior and Mechanisms
This research presents a novel approach to understanding the curling and uncurling behavior of tracing paper when exposed to water, identifying limitations in traditional diffusion-based models like Fick’s second law. While Fick's model adequately represents the uncurling phase, where water content is stable, it falls short during the curling phase due to its inability to account for dynamic changes in diffusivity. Our study identifies capillary action, modeled through Richards' equation, as the primary mechanism in the curling phase, where diffusivity varies with water content due to capillary-driven water movement through the paper's porous structure. Experimental data align well with the Richards' equation model, highlighting a saturation point where curvature peaks, governed by evaporation's impact on moisture balance. To simulate this phenomenon, we developed a finite difference approximation scheme based on Richards' equation, discretizing the spatial domain for detailed control over moisture dynamics and incorporating the Robin boundary condition with virtual points. This approach, combined with evaporation considerations, produces simulation results consistent with observed data, emphasizing evaporation’s role in steady-state moisture gradients and the subsequent deformation mechanics. Our findings further reveal that factors like paper thickness, temperature, and salt concentration significantly influence curling behavior. We established linear correlations between peak time and thickness reciprocal, as well as between peak curvature and thickness squared, supporting theoretical models. Temperature affects both peak curvature and curling rate due to changes in viscosity and surface tension, and higher temperatures prevent full uncurling due to sustained evaporation effects. Increased salt concentration heightens peak curvature without altering expansion ratio, suggesting additional variables in play.
Evaluating the Impact of the AI-Powered Interactive Journal “I Am Great Because of Me” on Reducing Impostor Syndrome Among High Performing Students
Impostor Syndrome, a psychological phenomenon where individuals doubt their abilities despite evident achievements, can hinder personal and academic development. This study aims to evaluate the effectiveness of the interactive journal “I am Great Because of Me”, integrated with artificial intelligence (AI), in addressing Impostor Syndrome among high-performing students. The journal features innovative tools such as the Clance Impostor Phenomenon Scale (CIPS) test accessible via QR code, self-acknowledgement pages, and virtual consultations powered by AI chatbots. These elements aim to support self-reflection, provide real-time diagnostics, and deliver actionable recommendations for users. The ADDIE model was employed for the journal's development, incorporating feedback from experts and users. Likert scales and Cohen’s D analysis were used to evaluate satisfaction, usability, and impact. Results showed that 90.1% of students expressed high satisfaction with the journal’s accessibility, interactivity, and capacity to enhance self-awareness and motivation. A pre-test and post-test conducted on the intervention group revealed a significant reduction in Impostor Syndrome by 42.5%, with an effect size of 2.84, categorized as "very large." Features such as the self-acknowledgement worksheets helped students recognize their strengths, while AI consultations offered additional psychological support. Expert validation emphasized the journal’s clarity, relevance, and objectivity, noting the absence of bias in AI-driven suggestions. The journal was praised for its accurate content, ease of use, interactivity, and the protection of user data, ensuring a safe and private environment for self-development. Students found the journal beneficial not only for addressing Impostor Syndrome but also for fostering personal growth and self-confidence. This research demonstrates the potential of combining psychological theories with AI-driven tools in education. The journal “I am Great Because of Me” effectively aids students in overcoming Impostor Syndrome and improving self-perception. It serves as a scalable solution for schools and individuals aiming to tackle similar psychological challenges. Future studies are encouraged to explore its application in broader contexts to maximize its impact.