全國中小學科展

臺灣

自由基VS抗氧化物

自由基會產生在神經系統、免疫系統、血液循環系統等等,進而影響到人體各器官的運作,甚至於近年來許多醫生學者提出自由基病理:自由基是百病之源。本次實驗筆者挑選葡萄子、維生素C、綠茶來抑制清氧自由基(OH.)所採用的方法是將10%雙氧水製入注射筒並加亞鐵離子催化,,使其與抗氧化物反應,由於雙氧水分解會產生氫氣自由基與氧氣,因此筆者用倍率放大器(OPA)放大生成氧氣造成的電壓,並用Data Studio測量記錄,最後可由氧氣體積對電壓的趨勢圖看出抑制氫氣自由基的效果;Free radicals will be produced in our nerves system blood circulation immunization system etc. and they able to influene the operaion for our organs many medical scholars have even come up with "free radical pathology"-free radicals are sourse of all he diseases in recent years.In this study, I chose rape stone vitaminC and green tea to restrain hydroxide radicals(OH.) Here is summary of the experimental process. First,I put 10%hydrogen peroxide into an injector and then added ferrous ion to hydrogen peroxide to catalyze it. Second I let it reaact with the sample. Because hydrogen peroxide can produce hydroxide radicals and oxygen, I used the mutiplier(OPA) to amplify the pressure caused with the prducion of oxygen, measuring and recording resuls by the software"Data Studio"Finally, we can tell which antioxidant is more effective in restraining hydrode radicals from volume-voltage gragh.

揭密「磁浮列車」

從小,我就對磁鐵這種礦物感到新奇,而近幾年又出現一種利用電磁鐵的磁極變化來產生動力的交通工具----磁浮列車。所以我就上網蒐尋相關資料,結果卻意外的發現一整套的磁浮列車模組,因此我就針對它的各種模式加以變化,並將地形的變化融入研究中,做為這次的研究方向。在這次的實驗中,我探討了(1)磁軌排列方式及間距(2) 車底磁鐵的排列方式、方向及間距(3)側面磁軌NS極、堆疊數目及間隔,並在最後將以上的最好變因融入高低起伏的地形中,做出一款只需些微動力就能向上、下滑行且效果最好的磁浮列車。

Double Pedal Curve

設Γ為一平面曲線而 P 為一定點 , 自P 向Γ所有的切線作對稱點,則所有對稱點所成的圖形Γ1 稱為曲線Γ對定點P 的double pedal curve , Γ1 對定點P 的double pedal curve Γ2 稱為曲線Γ對定點P 的2-th double pedal curve , Γ2 對定點P 的double pedal curve Γ3 稱為曲線 Γ對定點P 的3-th double pedal curve ,…… 。以下是本文主要的結果:結論A:當Γ為一圓形而P 為圓上一點時 , 計算其n−th double pedal curve 的方程式。結論B:當Γ為任意平滑的參數曲線而P 為任意一點時 , Γ的 double pedal curve 的切線性質。結論C:當Γ為任意平滑的參數曲線而P 為(0,0)時, 計算其n−th double pedal curve 的方程式。 Given a plane curve Γand a fixed point P ,the locus of the reflection of P about the tangent to the curveΓis called the double pedal curve of Γwith respect to P.We denote Γ1 as the double pedal curve of Γwith respect to P, Γ2 as the double pedal curve of Γ1 with respect to P , Γ3 as the double pedal curve of Γ2 with respect to P ,and so on , we call Γn the n-th double pedal curve of Γwith respect to P. If Γ is a circle, and P is a point on the circle, we got the parametric equation of the n−th double pedal curve of Γ with respect to P. And, for any parametric plane curve Γ; we got the method to draw the tangent of the double pedal curve of Γ.

廢紙漿發酵產氫之探究

氫氣在燃燒後只會產生水而不產生溫室氣體之二氧化碳,可謂一種潔淨能源。 生質能源是屬於碳中性(Carbon neutral)型之利用方式,因此本研究著眼於如何建構一個操作簡便的共代謝系統,將生質料源從微生物之發酵反應中釋放氫氣出來。 實驗的主要方法是利用好氧性的Bacillus thermoamylovorans 與厭氧性的Clostridium butyricum 共培養分解廢紙漿以生產氫氣。廢紙漿是混合的基質,內富含纖維素、並含一些油墨及少許雜質。利用Bacillus thermoamylovorans 是好氧菌,同時也能將廢紙漿中的纖維素轉換成還原醣的特性,將原本有氧的環境轉換成絕對厭氧的環境,並將廢紙漿中的纖維素轉化成Clostridium butyricum 可以利用的還原醣。如此一來,原本不利於Clostridium butyricum 生長的環境,卻能透過簡單的共培養方式創造出有利於Clostridium butyricum 生長的環境並產生氫氣。除此之外,我們也對不同碳源、不同的植菌量、不同的氧氣量,比較其產氫能力差異,發現增加氧氣量可以提升最後的產氫量大約2.7 倍。 ;Our major goal is to develop a cost-effective biohydrogen production system by the co-culturing of Bacillus thermoamylovorans and Clostridium butyricum. The aerobic Bacillus thermoamylovorans will consume oxygen and converse waste paper pulp into reductant-sugar and the anaerobic Clostridium butyricum will generate hydrogen after oxygen is consumed. With the increase of aeration, the aerobic Bacillus thermoamylovorans growsappropriately leading to more biohydrogen production. However, in enhanced aeration condition, the Bacillus thermoamylovorans will consume sugars that can offer for the Clostridium butyricum. So we can conclude that the control of oxygen is the key point for the system to operate.

使用於生產基因工程蛋白之家蠶自動注射系統的研究

本研究計畫之目的在建立一個家蠶自動注射系統,並應用此系統讓家蠶生產具特定抗菌蛋白之蠶絲,製成抗菌繃帶。使用家蠶為載體生產特定基因工程蛋白,具有成本低廉、產量大、品質較好等優點,而家蠶自動注射系統可以大幅增加其生產基因工程蛋白蠶絲的效率。本研究中先進行家蠶表皮組織之研究,找出家蠶的最佳注射點。其次使用電流變液做為介質,設計了可控快速家蠶固定系統,並使用單一攝影機進行影像辨識,進行注射器之雙軸定位。接著發展出小液量之微量注射器,每次注射量可低至2 l。系統中並設計一圓盤式輸送系統,可快速運送家蠶至定點接受注射。研究後段以實驗控制桿狀病毒之濃度,讓家蠶產出具特定抗菌蛋白之蠶絲,並使用該蠶絲製成抗菌繃帶,可有效保護傷口免於特定細菌之感染。

Emitting Gold Nanodots Synthesized via Protein Templates

本研究利用蛋白質的環保、生物活性,金奈米粒子的低毒性,及蛋白質金奈米粒子的螢光特性,合成可應用於生物體內之螢光蛋白質金奈米粒子,從而利於標靶藥物研究。本研究選擇與眾多疾病相關的胰島素,以最佳方式合成紅色螢光胰島素金奈米粒子,有助於探討糖尿病相關機制。並嘗試以養晶得到結晶狀的胰島素金奈米粒子;經由離子測試發現胰島素金奈米粒子十分穩定,更可應用於細胞內微量氰離子檢測;根據CD光譜,確認胰島素金奈米粒子與胰島素的蛋白質二級結構相似。之後利用MTT測試細胞毒性,並將胰島素金奈米粒子餵入細胞,並取得細胞螢光影像,證明胰島素金奈米粒子可經由細胞表面之胰島素受體進入細胞內,且呈現紅色螢光,證明胰島素金奈米粒子可用於生物體內顯影追蹤。利用老鼠實驗證明胰島素金奈米粒子具有胰島素降血糖之功用。

奈米溶膠製成蓮花效應及應用

Lotus effect(蓮花效應)是蓮葉表面化學組成(wax)與物理組成(微纖維結構)兩者所造成。本研究是以模擬Lotus effect,採用Sol-Gel 製成,將氟化矽聚合為奈米膠體。實驗結果發現,以異丙醇為溶劑,再依序加入氟化矽、硝酸以製成的Sol-Gel,將其塗覆於玻璃表面,可得到最高的接觸角(114.71°),且少量的氟化矽可製成大量的成品,已具有實用價值又兼顧成本的優點,最重要的是,本研究克服了目前Sol-Gel 製程與應用的四大難題(機械強度、與基材接著問題、透明度、溶膠凝固問題),可說是一大創舉。利用所研發出來的奈米溶膠,我們能成功地將Sol-Gel 附著於布料、玻璃、釉表面、粉體,也能成功地研發出具有自潔透氣的布料、救生衣、雪衣、棉被及自潔功能的玻璃、磁磚與市面上尚未研發出的防水粉體(接觸角>140°),因此我們研發出的Sol-Gel 應用甚廣,有無限的發展潛力。Chemical composition (wax) and physical characteristics (microstructure) of lotus leaves are both responsible of the so call Lotus Effect. In this study we intend to demonstrate louts effect by applying Sol-Gel method to polymerize fluorosilane into nano-scale colloid. Our experimental results shown that the sol-gel made based on isopropanol solvent with fluorosilane and nitric acid added in order, when coated on glass plate, can achieve highest (liquid-surface) contact angle of 114.7 degrees. In addition, only small quantity of fluorosilane is sufficient to produce large amount of product, making this method feasible and cost-effective. More importantly, this procedure overcome the four major difficulty of sol-gel processing and application, namely mechanical toughness, adhesion with substrate, transparency, and consolidation. Using the nano-sol-gel developed in this study, we have successfully coated the sol-gel onto fabric, glass, ceramic grazing surface, and powder, which allow one to make self-cleaning breathable clothes, life jacket, snow cloth, futon and self-cleaning glass and tiles, as well as water-proof powder (contact angle > 140 degrees) which is brand new on market. We therefore believe that there is a great potential for the application of sol-gel developed in this study.

擬-Lucas多項式的幾個性質

本篇文章從"將aⁿ+bⁿ分解成(a+b)及ab的非線性組合"出發,在同樣的遞迴精神下引進並定義擬-Lucas多項式 <Sn (X)>:

簡易方法測量擴散係數

溶液和水置於同一容器中,當溶液中的溶質向上擴散時,溶液的濃度會隨著\r 高度改變,形成濃度梯度以及折射率梯度dy/dn。\r 寬度a 的透明方形盒,下方盛溶液,上方加入水,雷射光照射和鉛直成45°\r 的玻璃棒,再照射方形盒時,由於溶液的折射率梯度,雷射光在屏上形成鐘形曲\r 線,向下偏Z 的距離,r 為容器至?的距離,ar/Z=dy/dn 。\r 兩液原始交界處(y=0)鐘形曲線最低位置(Z)隨著時間(t)改變,測量Z 及t 作1/Z平方-t圖,由其斜率可算出擴散係數D。\r 濃度較高的二元混合液,例如甘油水溶液,當其重量百分率濃度未超過70%\r 時,擴散係數仍不隨濃度改變;但在屏上所形成的鐘形曲線,其最大偏折點不但\r 逐漸上升,還向甘油方偏移。測量偏移點所對應的液高(y),以及經歷時間(t);\r y平方= 2Dt,作y-√?? 圖,由其斜率亦可算出甘油的擴散係數。

移動棋子問題的致勝策略

We consider a game played with chips on a strip of squares. The squares are labeled, left to right, with 1, 2, 3, . . ., and there are k chips initially placed on distinct squares. Two players take turns to move one of these chips to the next empty square to its left. In this project, we study four different games according to the following \r rules: Game A: the player who places a chip on square 1 wins;Game B: the player who places a chip on square 1 loses;Game C: the player who finishes up with chips on 12 . . . k wins;Game D: the player who finishes up with chips on 12 . . . k loses. After studying the cases k = 3, 4,5 and 6 for Game A and the relation among these four games, we are led to discover the winning strategy of each game for any positive integer k. The strategies of Games A, B and C are closely related through a forward or backward shifting in position. We also found that such strategies are similar to the type of Nim game that awards the player taking the last chip. Game D is totally different from the rest. To solve this game, we investigate the Nim game that declares the player taking the last chips loser. Amazingly, the strategies of two Nim games can be concisely linked by two equations. Through these two Nim games, we not only find the winning strategy of Game D but also the precise relation between Game D and all others.\r 去年我研究一個遊戲:有一列n個的方格中,從左至右依序編號為1,2,3,....n。在X1個、第X2個、第X3個格子中各放置一個棋子。甲乙二個人按照下列規則輪流移動棋子:\r 一、甲乙兩個人每次只能動一個棋子(三個棋子中任選一個)。遊戲開始由甲先移動動棋子。二、甲乙兩個人每次移動某一個棋子時,只能將這個棋子移至左邊最近的空格(若前面連續有P個棋時可以跳過前面的P個棋子而且只能跳一次),而且每個方格中最多只能放一個棋子。\r 研究這個遊戲問題時,我討論四種不同"輸贏結果"的規定:甲乙兩個人中,A誰先將三個棋子中任意一個棋子移到第一個方格,誰就是贏家。B誰先將三個棋子中任意一個棋子移到第一個方格,誰就是輸家。C誰先不能再移動任何棋子,誰就是輸家。D誰先不能再移動任何棋子,誰就是贏家。\r 當"輸贏結果"的規定採用ABCD時─我們稱為遊戲ABCD。今年我將把這個遊戲問題中棋子的個數由三個推廣到一般K個情形之後,再繼續研究遊戲的致勝策略,同時也將研究遊戲ABCD之間的關係。