酒精對斑馬魚胚胎眼睛發育的影響
長期以來,臨床研究發現會影響人類胚胎的正常發育,造成胚胎畸形、成長遲緩等現象,稱為胎兒酒精症候群(fetal alcohol syndrome),但是其病理機制仍不清楚。最近的研究發現斑馬魚胚胎對於酒精有非常靈敏的反應,出現明顯的發育異常現象,例如心臟膨大、眼睛縮小、骨頭變形等現象,與人類胎兒酒精症候群相似,顯示斑馬魚非常適合作為研究胎兒酒精症候群的模式動物。在本實驗中,我們針對酒精影響視網膜神經發育的現象進行探討,並且也利用基因晶片篩選出胚胎發育時期受酒精影的的基因轉錄子,藉以了解酒雞造成胚胎畸形發育的機制。實驗結果顯示在眼睛發育過程中,1.5% 酒精浸泡會抑制視網膜神經細胞的分層(Lamination),而進一步利用RNA定位雜交的方式以眼睛的標示基因rx1、pax6b、six3b、alpha-crystallin、rho、neuroD、huC觀察他們的表現,發現酒精會減少視網膜神經細胞的分化,造成眼睛發育的缺陷。在基因晶片的分析中,我們發現酒精處理會抑制許多控制眼睛發育的基因調控子的表現,包括了crx、rybp、irx4a、optx2、rx1、brn3b1 與 vsx1等,此外約有16%的眼睛相關基因液受到酒精的抑制,遠高於其他基因受抑制的比例,顯示眼睛是酒精傷害最嚴重的區域之一。我們從實驗結果得知酒精並未對胚胎發育初期眼睛的發育造成明顯的影響,但是隨後由於控制細胞分化的幾個重要基因受到酒精抑制作用,造成視網膜神經細胞的分化停止,引起眼睛的異常發育的情況。It was known that prenatal alcohol exposure may cause serious birth defects and developmental disabilities. The molecular mechanism of this fetal alcohol syndrome still remains unclear. Here we used zebrafish embryo as a model to investigate the toxic effect of alcohol in retinal development. The histochemical analysis revealed that the cell lamination was prohibited by alcohol incubation. It appears that the retinal cell differentiation was inhibited. As revealed by whole mount RNA in situ hybridization, it appears that the transcription of a number of retinal-related regulatory genes, including rx1, pax6b, six3b, alpha-crystallin, rho, neuroD and huC, were all inhibited in zebrafish embryo by alcohol exposure. The transcriptional profile of alcohol-exposed embryos was also compared with normal embryos by microarray analysis at different stages. It appears that 16% of retinal-related genes were all repressed by 1.5% alcohol incubation, including several retina-related transcriptional factors, including crx, rybp, irx4a, optx2, rx1, brn3b1and vsx1. Our results suggest that alcohol did not interfere the early development of the eye, but has inhibited the final cell differentiation of retina cells. This study helps us understand the molecular mechanism of alcohol-mediated retinal malformation.
台灣珍稀水生蕨類槐葉蘋形態、生活史及生存環境的研究
槐葉蘋(Salvinia natnas)生長於台灣低海拔淡水濕地,目前已列為嚴重瀕臨滅絕的台灣原生物種,為不具有根的植物,是世界珍稀的漂浮型水生蕨類。本研究是探討槐葉蘋形態、生活史及生存環境因子,實驗發現可藉由成熟浮水葉外部形態特徵來區別槐葉蘋與外來種之人厭槐葉蘋(Salvinia molesta);槐葉蘋成熟浮水葉呈橢圓形,葉上毛被物是叢生且分岔,人厭槐葉蘋成熟浮水葉呈雙耳形,葉上毛被物則像打蛋器。當兩物種共存於同一個環境空間時,人厭槐葉蘋以平均11.6 cm2/week 的生長率將槐葉蘋完全取而代之,顯示人厭槐葉蘋之入侵對槐葉蘋生存影響之深遠。經由兩年的槐葉蘋物候觀察,發現3~11 月為抽芽成長期、3~12 月為成熟繁殖期、12 月~隔年2 月為冬枯期及孢子囊果出現期,12 月~隔年5 月為孢子囊果成熟開裂期。其繁衍策略可分為無性繁殖(頂芽及側芽生長)及有性生殖(異配子體交配)。探討環境因子(光照度、氣溫、濕度、水質、水溫、pH 值)分析結果,適合槐葉蘋生存環境的條件為(1)陽光間接照射(半遮蔭,遮蔭度58.33%)、(2)乾淨未受污染的水質(pH 6.5~8)、(3)通風性良好。生長環境符合以上條件即可達到移地保育的目的。Salvinia natans, a floating fern without roots, grows in low elevation fresh water wetlands of Taiwan, and is a critically endangered precious Taiwanese native species. This research investigates the life form, life history, and living environment of Salvinia natans. Our experiments show that we can differentiate Salvinia natans and Salvinia molesta, two easily mixed up species. The shape of matured floating leaves of Salvinia natans is elliptical and smaller, while it is twin-ear shape and larger for Salvinia molesta. Also, they can be distinguished by their leaf hairs. The hairs of Salvinia natans are tufted and separated at the tips, while the hairs of Salvinia molesta form an ‘eggbeater’ shape at the tip. When these two species lived together, Salvinia molesta grew in a rate of 11.6 cm2/week and will replace all Salvinia natans eventually. This shows the profound impact of invasion of Salvinia molesta. From the data of 2-year phenology observation, we concluded that budding took place from Mar. to Nov., growing and reproducing from Mar. to Dec., decaying from Dec. to Feb. (sporocarps were born in this period), and sporocarps matured from Dec. to May. There are two reproduction strategies: sexual reproduction (intergametophytic mating), and asexual propagation (by terminal and axillary growth). After investigating the environment factors (illuminance, air temperature, water temperature, humidity, pH), we found that ex situ conservation for Salvinia natans requires 1) indirect sunshine, 2) unpolluted water (pH 6.5 ~8), and 3) good ventilation.
天然植物色素與人工染料敏化之太陽能電池
本實驗以吸附染料之二氧化鈦奈米結構電極層為承載基材的太陽能電池為研究對象,旨在增進其光電轉換效率,促使染料有效地吸收光能後造成電荷分離,再經由二氧化鈦傳導帶向外傳出而形成電流,即所謂染料敏化太陽能電池。實驗主軸共分三:1、合成染料N3:觀察吸附度與浸泡時間之關係,發現在18~20 小時電池有最佳吸附;改變電解液濃度,求得最佳電解液濃度範圍;酸化二氧化鈦極板。2、天然植物色素:改變溶劑,得出高極性之丙酮對電池最佳;酸、鹼化植物色素;觀察電池隨著光照時間增加,性質趨於穩定。3、混合色素與染料:此實驗旨在印證不同吸能範圍之染料在極板混合浸泡後,電池吸能帶是否有疊加、擴充的效果,並觀察分開浸泡與混合色素一起浸泡之不同效應,量測IPCE 以玆比較。實驗結果可知,確實對於電池吸光範圍有所增加,且分開浸泡之效果較好。This experiment is mainly about the phtosensitization of Ti02 solar cell, aiming at improving the energy conversion efficiency, promoting the electric charge to separate from TiO2 and spread out through after the dye absorbs light. That is so-called dye-sensitized solar cell. The experiment mainly divides into three parts: 1. Ruthenium(II): Observing the connection between adsorption and dipped-time, find out that solar cell has best to adsorb in 18 to 20 hours; change the concentration of electrolyte; acidification TiO2. 2. Photosynthetic pigments: Change solvent, and get the conclusion that pigment has better adsorption in high polar solvents such as acetone; acidification/basification pigments; observe the changing of energy conversion efficiency while the illumination time increases. 3. Mixed the dye and pigment: This experiment is aim at proofing that the absorption spectrum of soaked-TiO2 may mix after dipped in different dye and pigment. Furthermore, we compares the differences between TiO2 dipped in one mix solution and dipped in several solutions separately, measure its IPCE. According to the experiment, the spectrum of soaked-TiO2 is certainly larger, and dipping in solution separately has better effect to the battery.