水生開花食蟲植物絲葉狸藻捕蟲囊構造及共質體輸送
水生食蟲植物絲葉狸藻 (Utricularia gibba) 是非常獨特的,它不但跟其他植物一樣能行光合作用,且具備捕蟲囊捕捉水中小生物,補充生長所必需的營養元素。捕蟲囊的構造精密卻不複雜,消化吸收主要靠囊內壁上的四爪腺毛,目前尚未有文獻實際以追蹤物質描述出整個共質體輸送路徑。我們是最先以螢光染劑 (carboxyfluorescein) 及共軛焦雷射掃描顯微鏡(confocal laser scanning microscope) 成功地描繪出捕蟲囊共質體運輸路徑。同時我們也以對細胞無害的食用色素,進行相同的實驗觀察。發現食用色素不但成本低,且較螢光染劑有更多的優點,如觀察時間較不受限制等,非常適合用來研究捕蟲囊吸收物質的路徑,因此,本實驗的模式可以應用在其他水生植物運輸路徑的研究。;The aquatic carnivorous plant Utricularia gibba is very unique. It has not only the ability to undertake photosynthesis just like other plants, but also can trap and obtain the nutrients from the freshwater zooplankton. Its trapping organ is very sophisticate but not complicate. The digestion and absorption process inside the trap are mainly accomplished by the quadrifids structure. According to our knowledge, we are the first to introduce the phloem-mobile, fluorescent probe carboxyfluorescein (CF) and confocal laser scanning microscope (CLSM) to the study of the symplastic transport in the Utricularia trap. In addition, we use edible food colorings as tracers for this transport study. Both approaches turn out to be very successful in delineating the symplastic transport of the trap. But CF quenches rapidly so the observation time is restricted. On the contrary, food colorings don’t have these disadvantages; it is inexpensive, easy to perform, and the transport process is not fast. As a result, the study is easily to be completed. These methods will be very helpful in the studies of symplastic transport in other plants.
熱巧克力效應之迷思
“熱巧克力效應”是當你將巧克力粉加入裝有熱水之馬克杯後用湯匙輕敲杯壁,可以聽出攪拌前後敲擊所得聲音頻率明顯不同,攪拌後巧克力粉溶解頻率會較高。一般論文的解答是「當粉末溶解的時候,藏在粉末裡的空氣就會跑出來,在空氣與水混合的環境裡,音速比在水裡低。當水裡不斷有空氣與水混進去時,這個容器的共振頻率和它裡面的音速有關,所以也會降低。因此你會聽到較低之音調,直到空氣全跑光。」但根據我的實驗我覺得這樣的解釋並不對。我們提出新的模型來解釋“熱巧克力效應”。When we put an ounce of dry chocolate powder into a mug filled with hot water, then tapping the side with your spoon will generate a sound. The pitch of this sound will rise after stirring. This is called “the hot chocolate effect”. According to a published paper, the explanation is “The air trapped in the powder is released as the powder dissolves. Since the speed of sound is lower in air than that in water, the speed of sound in the air-water mixture is lower than that in pure water. During that period while the air escapes the container, the resonant frequencies of the water, which depend directly on the speed of sound, will also be lower. Hence, you hear a lower tone until the air escapes”. However, our experiments clearly demonstrated that the explanation is plainly wrong. A new theoretical model is also proposed for the observed phenomenon.
滴水不漏-冷氣水回收應用分析
當我們在開車享受冷氣同時,此時冷氣水正一滴一滴的滴水,造成水資源的浪費,在環保意識抬頭的今天,我們即針對此一問題進行研究,主要將冷氣水回收起來,並運用在補充雨刷水箱或者提供引擎水箱或冷凝器降溫作用,是否達到提高引擎工作性能及降低冷氣冷房效果,進而達到「資源回收」的。實驗結果證明在補充雨刷水系統最符合環保概念;另在引擎水箱噴水作用時,可縮短風扇運時間並增加停止運轉時間,可增長風扇使用壽命,對下水管溫度亦可降低,可防引擎過熱;在冷凝器噴水作用中亦能明顯提升汽車冷房效果。When we enjoyed driving with cool air from air-conditioning, the condensed water from air-conditioning system is dripping from the system drop by drop. It caused the issues of the waste of water resource. Facing the greater public awareness of environmental protection issues in Taiwan, we are focusing on this issue to have further research. The idea is to re-cycle the air-conditioning condensed water and re-fill it in the water tank of wipers, the water cooling tank of engine or the cooling system of condenser. The purpose is to improve the performance of engine and enhance the cooling efficiency of air-conditioning system. It is helpful to meet the objective of water resource recycling. The result of experiment has shown that re-filling water in the water tank of wipers meet the goal of environmental protection well. Also, the water injection in the water cooling tank of engine could reduce each operation time of cooling fan and increase the idle time of cooling fan as well. It prolong the equipment life of cooling fan and lower the operation temperature of Low water pipe which prevent the engine overheating. Meanwhile, It is proved that the water injection in the cooling system of condenser can enhance the cooling efficiency of air-conditioning system.
約瑟夫數列(Josephus Series)
所謂約瑟夫數列,就是有n 個數排成一環狀,從頭開始,殺1(個數)留1(個數),求倒數第k 個留下的數會是多少?約瑟夫數列在台灣的全國中小學科學展覽出現多次(如下表)。全國科學展覽與本題類似的作品
資訊界演算法大師Donlad E. Knuth 在其著作The Art of Programing,CONCRETE MATHEMATICS,也針對該數列作詳細的說明。唯,不論是歷屆科學展覽或是大師的著作,對於該數列,都只是談及殺1 留β或是殺α留1。
筆者則在2005 年暑假,曾經提交於全國國小組比賽作品「老師無法解決的難題」討論到n 個人排成一圈經過殺α留β,最後留下來的情形。
本研究是將α、β、k 和n 作為變數,求:當有n 個數排成一環狀,從頭開始,殺α(個數) 留β(個數),則倒數第k 個留下的數會是多少?
需符合α、β、k、n 皆∈N,且n≧k
1.直觀觀察:發現在每一個循環中,當n 等差α時,Aα,β,n,k 則等差α+β、n- Aα,β,n,k 則等差β。
2.分類:將其分類為cα,n,使當中有規律可求。
3.循環觀察:發現每個循環的尾數n- Aα,β,n,k 都小於β。
4.循環尾數:設計公式求出每個循環節的尾數n、留下數Aα,β,n,k 及n-Aα,β,n,k 。
5.倒推:由與循環節中有等差的性質,則可以由循環節的尾數,推論出循環節中的任意一數。
Joseph Sequence is the problem that discussed the situation of eliminating1 and retaining1 in the circle formed by n people. Joseph Sequence has appeared a number of times in National Elementary School and Middle School Science Fair in Taiwan (as shown in the table below). Past national science fairs and researches on Joseph Sequence
The publications,The Art of Programing,CONCRETE MATHEMATICS ,by the expert of mathematical calculation in the IT industry,Donlad E. Knuth,has provided detailed explanation on it. However, all of those only discussed eliminating 1 and retaining β or eliminating α and retaining 1.
The researcher proposed “Problems unsolved by teachers” in the national competition, and discussed the situation of eliminating α and retaining β in the circle formed by n people. This study continued the summer project of 2005, and conducted research on the question of when is the last kth person eliminated in a circle formed by n people. In the paper, α, β, n and k were independent variables and the research process was as follows:
1. Direct observation: the series shows equal difference in each cycle.
2. Classification: to search the pattern of the series based on cα,n classification.
3. Use the end number of each cycle to obtain the pattern.
4. Reverse induction: use the equal difference of each cycle to induce when the kth person would be eliminated.
微波加速轉酯化生成生質柴油實驗與結果分析
因國際原油價格上漲,因此對研究及發展具潛力的生質柴油引起高度興趣。傳統以加熱方式在適當觸媒下將低碳數醇類與油脂轉酯化生成生質柴油。但以強鹼為觸媒使用過量會讓部分反應轉為皂化。而利用微波,使微波腔在極短的時間內產生電場,使具有電偶極的分子朝向電場方向迅速排列而產生轉動,快速地增加分子間的碰撞頻率而加速反應,但不破壞分子結構。也嘗試利用超音波來生產生質柴油。試驗方法為利用SD-22 柴油引擎測試所生產的生質柴油,並收集廢氣檢驗,評估其污染性。實驗後發現,微波能將一般加熱所需的60 分鐘大幅縮短至4 分鐘,甲醇溶液能生產較多的生質柴油。其中1.40%氫氧化鉀甲醇溶液且油與醇莫耳比1:9 效果較佳。氫氧化鉀甲醇溶液0.80%且油與醇莫耳比1:5 效果亦佳。製成的生質柴油能讓引擎發動,廢氣處理後經分光光度計檢驗氮氧化物,生質柴油確實能有效減少氮氧化物污染。
Due to the fact that the price of international crude oil raises , people look for alternative energy resources actively. Therefore, I have great interests in doing researching and developing the biodiesel through many ways. The traditional way is to transesterify the low carbon alcohols and fats with the suitable catalysts by means of generally heating. However, the overuse of strong bases as catalysts may turn the experiment result into saponification reaction. This study made good use of the microwave to generate electric fields in the microwave cavity in an extremely short time. Owing to the effect electric fields exerted, the molecules with electric dipole momentum rearranged to rotate rapidly .Consequently, the frequency of collision among the molecules increased without destroying the molecule structures. Also, I applied SD-22 diesel engine to test the produced biodiesel and examined the collected exhaust to evaluate its pollutant. According to the results of these experiments, the conclusion was as following: the microwave could shorten the Transesterification reaction time from 60 minutes to 4 minutes. The methanol solution could produce more biodiesel than the ethanol solution. Besides, the 1.40 wt % Potassium hydroxide solution with the molar ratio of oil and methanol 1:9 had the best efficiency in producing biodiesel. On the other hand , the 0.80 wt % Sodium hydroxide solution with the molar ratio of oil and methanol 1:5 also had the great efficiency. All the biodiesel we produced enabled the diesel engine to run smoothly. The exhaust inspected from the examination of Spectrophotometer resulted that the biodiesel did less NOx pollution to the environment indeed.