快速檢定抗生素對細菌生物膜敏感性之新技術
The purpose of this study is to set up a quick, easy and economical way to evaluate the ability of different concentration of various antibiotics to penetrate biofilm and establish the antimicrobial susceptibility patterns of various antibiotics. The susceptibility of five antibiotics upon sessile cultures of Bacillus subtlis ATCC 6633, Escherichia coli XL, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29213 and Sarcina lutea ATCC 9341 were measured ATCC 27853, and S. aureus ATCC 29213 proved to be very difficult to eradicate, with only Gentamicin proving to effective at achievable drug concentrations, but the S. lutea ATCC 9341 biofilm was the most susceptible to the Penicillin. The results demonstrated that for biofilms of the same organisms, several hundred to thousand times the concentration of a certain antibiotic were often required for the antibiotic to be effect, while other antibiotics were found to be effective at the MICs. The concentration of antibiotic to penetrate the biofilm is proportional to the thickness of biofilm. Indeed, our research have already indicated that the use of MIC values to indicate antibiotics effectiveness is misleading, because MIC values can not represent the actual effect of anticbiotics on microbiologicals that have developed biofilm. The antimicrobial susceptibility patterns of antibiotics to various bacterial biofilm are different. The susceptibility of the mixed biofilm depends on the physical and biological change of biofilm. Our biofilm device offers a new technology for the rational evaluation of antibiotics effective against microbial biofilms and for the screening of new effective antibiotic drugs.此研究之目的是要建立一套操作簡便、快速且費用低廉之生物膜厚度產生方法,藉此探討不同生物膜厚度對抗生素抗菌之影響,進而完成抗生素對生物模之抗菌圖譜。本實驗將測試五種抗生素Bacillus subtilis ATCC6633,Escherichia coli XL,Pseudomonas aeruginosa ATCC27853,Staphylococcus aureus ATCC29213和Sarcina lutea ATCC9341之抗菌圖譜。試驗結果顯示Gentamicin對前四株試菌有較佳之穿透力,對S.lutea ATCC 9341則是Penicillin。實驗結果證明最小抑制濃度值確實無法實際有效地表達對已形成生物膜菌體之抗菌效果,要完全去除生物膜之抗生素濃度是為最小抑制濃度之數百倍到數千倍,而且抗生素用藥濃度隨著生物膜厚度增加而成比例增加。不同抗生素對不同菌株生物膜有不同之抗菌圖譜,混合菌株生物膜是否會促進或抑制抗生素之穿透力,端視其生物膜結構有無改變。本實驗方法可以做為一種快速檢定抗生素對細菌生物膜敏感性之新技術,同時亦可有效地篩選新的抗生素藥物對生物膜的抗菌效應。
濃差電池與溫差電池
伏打電池中,若兩極的電極種類及溶液種類均相同,僅是兩極的溶液濃度或溶液溫度不同,兩極間就有電位差,稱為濃差電池及溫差電池。典型的濃差電池中 ( 電極為電解液正離子的金屬片 ),濃度大的一端電位較高,電池電壓與兩杯溶液濃度比值的對數值成正比,且在相同濃度比值時,硝酸銀濃差電池的電壓最大,其次為硝酸銅、硫酸銅,硫酸鋅濃差電池的電壓最小。硫酸銅溫差電池,若電極為銅片,則電池電壓與兩杯溶液溫度差成正比,且溫度高的一端電位較高。
我們將硫酸銅溫差電池製成太陽能電池,在太陽下曝曬3 小時,電壓可達 13.6mV, 電流可達0.76mA,因此只要串聯數個電池以提高電壓,再對鉛蓄電池充電,就可以達到方便、實用與重複使用的目的。
In a voltaic cell, if the kinds of both electrodes and electrolytes are the same, but the molality or the temperature of the solutions are different, there will be potential difference between the two electrodes. We can them molality-difference cells and temperature-difference cells. In a typical molality-difference cells-its electrode is a piece of metal which is the same kind of metal with the cation electrolyte.-the electrode with the higher molality has the higher potential, and the potential and the log of the fraction of the molality of the two glasses of solution are directly proportional, and when the fraction is the same, AgNO3 has the highest potential and then Cu(NO3)2 and CuSO4, and ZnSO4 has the lowest potential. In a CuSO4 temperature-difference cell, if its electrode is a piece of cuprum, then the potential and the temperature- difference of the two glasses of electarolytes are directly proportional, and the electrode with the higher temperature has higher potential.
We use CuSO4 temperature cell to make a solar cell, and put it under the sun for 3 hours, the potential can be 13.6 m V, and the current can be 0.76m A. Therefore we can make several of them series to get higher potential and charge a lead storage battery. By this way, we can make a convenient, practical and recycled battery.
大自然的奧妙~土壤自我淨化能力
大氣圈、水圈與土壤圈是構成自然環境的三大領域,三者之間相互的影響,原本這些空間都具有極大的包容力,亦所謂「自淨能力」,許多的物質進入其中皆會被氧化分解或稀釋而消失於無形。近年來由於工業發展、人口增加,產生大量的廢棄物,長期、密集且迅速的堆積於環境中,使得天然的自淨能力無法應付而失去功能,造成嚴重的後果。就土壤而言,雖有較佳的自淨能力,但是一受污染,除了嚴重破壞土壤品質之外,同時也會直接或間接污染水源 (如:地下水)及空氣,對動植物造成危害,並且難以回復,實不容忽視。本實驗探討:一、土壤淨化能力是否受到不同地區、不同土壤性質的影響。二、同樣的土壤,對不同的污染物(色素、肥料、重金屬)淨化能力強弱的影響。實驗結果顯示大肚山土壤過濾溶液中的色素、磷、及重金屬中的鉻、鎳、銅的能力較中寮及大甲土壤強,只有氮與鉀的過濾能力較大甲土壤差,所以這次實驗中大肚山土壤有最好的污染淨化能力。實驗結果將來也許可以應用於土壤處理場址之適宜性評估。The air, water and soil are three parts of the nature. They affect each other. In fact, they have the "self-purity ability" - they can disassemble many polluted thing by this kind of self-purity ability. These years, because the industry development and the population explosion make lots of waste, the self-purity ability cannot do its best. The soil has better self-purity ability, but if it is polluted, it will not only pollute the water (ex: underground water) and the air, but also damage the animals and plants. We cannot ignore the serious result. This experiment will discuss:1. If the soil self-purity ability is affected by different area and different soil specificity? 2. The different purified results according to the different pollutant (ex: color, fertilizer and heavy metal) in the same soil. Results showed that Da-Du-San soil had strong ability then Chung-Liao and Da-Cha soil in filtrated color, phosphor, chromium, nickel and copper in the solution, but had weak ability then Da-Cha soil in filtrated nitrogen and potassium. Therefore, Da-Du-San soil had the beast pollution-purity ability in this experiment. In the future, results may be applied to the suitability evoluation of the soil treatment place.
8x8 棋盤路徑解之一般化推廣
Abstract (一)、 In our study, we discuss a m×n chess and any beginning square p finding a directed path of chessman from p moving to an end square in which the chessman moves to adjacent squares including only three directions which are right move, up move and diagonal left down move. A m×n chess is ruled into m columns and n rows creating the number of (m×n) squares (二)、 A chess directed path moves from any beginning square to end square in a m×n chess and every other square is visited just once. In the view of the beginning squares, the chess paths are solvable paths in a mxn chess and the corresponding squares are solutions. (三)、 First, we find out that some beginning squares are located in a special area with no any solvable directed paths. We define the special area be no-solution area. (四)、 According the 3-color theorem, we determine more than two thirds of no-solution area. (五)、 Then, we derive properties of reversibility and symmetry in solvable paths. i.e. A solvable path exist another solvable path by reversibility and symmetry respectively. (六)、 Utilizing the generalization of no-solution area which is extended from the concept of no-solution area provides judgment for the next moves effectively. The judgment is defined as effective move principle. (七)、 Furthermore, using the other theorem called rules of shift Hamiltonian path gets augment solutions. (八)、 According to the effective move principle finding a number of solvable directed paths, use the reversibility and rules of shift Hamiltonian paths to get augment solutions. Finally, utilize symmetry to find out all solvable paths in the m×n chess. (一)、研究規則:在m×n 的格子中,任取一格A 當作「起點格」,在起點格上放一顆棋子,只能往「上」、往「右」、往「左下」的方向移動。(二)、定義:若棋子從「起點格」,按照上述規則能不重複的通過所有m×n 格子到達某一「終點格」,則對於「起點格」而言,此移動路徑稱為m×n 的「有解路徑」,其任4一「終點格」稱為「起點格」的「路徑解」。(三)、我們先研究出「基本無解區」。(四)、根據遊戲規則我們利用三種顏色將n × n 方格塗滿,並判斷出大部分的「無解起點格」。(五)、利用遊戲規則得到兩重要性質:(1)[可逆性性質] (2) [對稱性性質](六)、利用「廣義基本無解區」,當作我們[有效移動]的判斷,讓「有解路徑」快速的找出。(七)、利用本研究所稱的「平移哈式鏈」,得到[擴充解]。(八)、根據[有效移動]求出部分「路徑解」,再利用[可逆性性質]、 [擴充解] ,最後利用[對稱性性質]完成所有「路徑解」的尋找。
解開神秘果的奧秘-檸檬變柳丁的原因
原產於西非的「神秘果」,嘗了之後,30~200 分內,所有酸苦的東西嘗起來都是甜的。在深入蒐集相關資料後,我們發現神秘果有多種特殊效果,僅擷取以下幾種感興趣之方向來研究。〈1〉使酸苦的感覺變甜〈2〉解酒〈3〉消除蚊蟲叮咬之腫、癢〈4〉抗氧化能力極強。用食鹽水可萃取出miraculin 這種醣蛋白,經由生化實驗,推測使酸味變甜為其cover 舌尖甜味味蕾之結果,分子量約為40000 左右;但在檢測過程中,發現對咖啡、黃連和肉桂,都沒有太顯著的效果,只有酸味有顯著的改變,和以往所閱讀的研究報告有出入,因此懷 疑有氧化還原等其他化學效果,將再做深一層研究。消除蚊蟲叮咬之腫癢的成分確定為小分子所致。經由Prolox 當量測定法檢測神秘果抗氧化能力數值高達4974g/nmol,比一般中草藥及蔬菜多3000 左右。使酸變甜的原因若深入研究對糖尿病患者和減肥者都是一大福音,塗抹蚊蟲叮咬藥膏也可用天然物質製作,而抗氧化能力高更對人體健康有所幫助。當台灣已大量栽植,相對於日本及美國因地寒而無法培育成功,神秘果研究可成為另一項產業發展契機。 "Miracle fruit” is a fruit from West Africa. Though it's not sweet itself, if you eat anything that is sour or bitter after eating miracle fruit, the taste will turn sweet. After researching further material, we discovered that there are many amazing functions in miracle fruit, and decided to pick up some of which to study. (1) Turning the sour and bitter tastes into sweetness (2) Relieving alcohol (3) Relieving the hurt from mosquitoes and bugs (4) An excellent antioxidant. We can extract the miraculin that changes the taste from NaCl (aq), and through the biological experiment, we guess that's because miraculin covers the sweet sensor. The molecular weight of miraculin is about 40000.According to the experiment, we found out that miraculin doesn't have a great effect on the taste other than sourness, such as the bitterness of black coffee, Coptis chinensis, and cinnamon. . It is much more different from the former report we read. So we doubt that there are some other reactions. The thing, which relieves the hurt from mosquitoes and bugs, are sure to be a simple molecule, not a protein. By the Prolox equivalent weight experiment, we found that the ability of antioxidation got to 4974g/nmol, which is much higher than the normal vegetables and fruits. The effect of taste changing is really good news for diabetics and weight reducers. And the medicine can also be made by natural material. The excellent antioxidation is helpful for our health, too. Since Japan and America cannot grow the miracle fruit because of the cold weather, developing the functions of miracle fruit seems to be another chance for Taiwan to stand out in the world.
Ethidium Bromide 對p53 基因缺陷老鼠致癌影響
p53 蛋白是一種轉錄調控因子,其在抑制癌症的形成扮演很重要的角色。已知的報告顯示它能影響下游特定蛋白表現進而調控細胞週期或促使細胞進行凋亡作用。如此作用機制對於可能癌化的細胞在生物體造成傷害之前能被先行消滅,因此正常的p53 蛋白存在與否,對癌症的產生有很大的影響。 根據上述結果,我們想分析不同表現量的p53 是否對於致癌藥劑-EtBr所引發的癌化細胞有所影響。所以我們設計實驗,將具有正常表現量p53 蛋白的老鼠(p53+/+)與僅能表現少量p53 蛋白的老鼠(p53+/-),均塗以等劑量之致癌藥劑EtBr於其大腿皮膚上,觀察其致癌情形的差異。實驗結果發現 : 在塗EtBr 的14 隻p53+/-老鼠中,有3 隻出現了組織病變的症狀,包括脾臟腫大,淋巴組織長出腫瘤,而其他對照組(一)塗EtBr 的p53+/+老鼠,(二)不塗EtBr 的p53+/+老鼠或(三)不塗EtBr 的p53+/-老鼠都沒有產生異常的症狀。因此根據上述實驗結果進行推論,發現經EtBr 的刺激後,p53+/-的老鼠的確較其他的老鼠更容易得到癌化細胞。;p53 is a transcription factor that plays an important role in suppression of tumorgenesis. Previous reports showed it regulates cell cycle and enhances cell apoptosis by effecting specific proteins expression. By this way, the problematic tumor cell can be deleted to protect organism from tumor damage. According above conclusion, we are interested to know whether p53 plays a role involved the carcinogens-EtBr induced tumorgenesis. We compared the differences of tumorgenesis between mice express normal (p53+/+) or low (p53+/-) expression level of p53 proteins when they are smeared equal amount of EtBr on skin of thigh. In here, our results show three of fourteen p53+/- mice had pathological changes, containing spleen enlargement and lymphoma. However, other three comparisons, smear p53+/+ mice with EtBr (1), without EtBr (2) or p53+/- without EtBr(3), are normal. Therefore, We suggest that p53+/- mice are easily to obtain tumor than p53+/+ mice after EtBr treatment.