全國中小學科展

臺灣

力拔山河-立體幾何模型與氣體對泡泡薄膜的影響

我們學會使用表面張力儀,也利用天秤自製工具,透過實作驗證溫度影響表面張力,每調製泡泡水皆測液溫及表面張力。將幾何模型由泡泡溶液中提離,模型中出現的薄膜因泡泡液體的表面張力而存在,泡膜間相接觸後會重新分配分子位置利於達穩定且內凹的泡膜型態。不同的速率、不同的方位(點、線、面)將模型拉離泡泡水面,發現點先離開泡泡水的內凹薄膜完整成型率最高,面先離開泡泡水成型率最低,邊數越多的幾何模型中間越不易形成結點或小平面的薄膜。對著泡泡薄膜中間打氣可形成與該模型圖案相近的氣室;可藉由抽氣筒將此氣室內的氣體抽出,並恢復該泡膜無氣室前之型態。若乾燥針尖戳入某一片泡膜,可發現,沒被戳的部分區域的泡膜幾乎可保持原貌。

鋁試春秋-探討鋁離子電池陰極元件對效率之影響並試做太陽能充電模組

鋁離子電池材料的性質優於其他二次電池。我們將SP-1和活性碳混合,製成不同比例的陰極,進行充放電測試。結果顯示,SP-1能增加充放電容量,而活性碳僅增加充電容量。XRD和拉曼分析顯示,SP-1具有良好的插層能力,而活性碳的強吸附能力使電子難以從陰極釋放,因此對放電的影響不明顯。 實驗中,我們將電池的充電電壓設為2.4V,但有些電池只能達到1.2V。在剪開這些電池後,我們發現其隔離膜上的漿料覆蓋較少,推測是由於Ni-bar的厚度使隔離膜與碳紙之間存在空隙。經過調整後,情況有顯著改善。 最後,我們將四個電池組合,透過太陽能板充電,成功使3V的馬達運轉,證明我們的太陽能充電模組是可行的。

非對稱反摺溝槽陣列過熱表面之液滴自推性能及冷卻效率

工業中時常會運用噴霧冷卻(圖0.1),以液滴的潛熱變化冷卻高溫表面。因此為了提升高溫噴霧冷卻的效率,本研究基於過往文獻與(Hsu,2023)共同研究微奈米結構表面ARG上液滴的碰撞運動,並由實驗推論高溫表面蒸氣層和氣泡推力的作用。接著由單一液滴碰撞實驗推導實驗和理論受力模型並進行比較。最後進行單一液滴冷卻實驗並推論連續液滴冷卻實驗結果。本研究發現ARG表面的各運動特性均優於文獻,且利用液滴的受力更全面地了解液滴運動和冷卻效率的關係,更在最後驗證其冷卻效率優於對照組,並發想探討連續液滴冷卻的實驗方法,以更貼合工業上實際的噴霧冷卻。經過此研究,ARG表面能夠實際應用於工業上高溫表面的噴霧冷卻。

光「纖」亮麗-探討光纖導光性質及照明應用

本實驗主要探討光纖性質及其生活應用。首先,本組測量所使用的光纖規格,接著改變不同變因,以測量損耗值來推斷光如何在光纖中傳輸。實驗後發現光纖越長,因吸收及微彎損耗,損耗值越大,而光纖彎曲角度越大、半徑越小、次數越多皆會因巨觀彎曲而造成損耗值增加;光纖上彎曲位置則是因全內反射、入射角度等造成越靠近入光處彎曲,損耗值越大;溫度對損耗值沒有太大的影響;波長越大則損耗值越大;而入射角度大於最大可接受角10°後,損耗值隨入射角度增加而增加。本組也將光纖用於製作一些照明裝置。一、用集光裝置來聚集光線,並用光纖將陽光導進室內來達到最小閱讀照明亮度的照明系統,二、只使用纖芯以用來製作安全照明裝置和條狀強光照明。

鳩佔鵲巢巧護食-有限相連環狀排列之探討

本研究旨在探討科學研習月刊62-2期中「鳩佔鵲巢」的問題。首先小斑鳩編號是0,喜鵲編號1、2、3、4、5,沿著圓周排列,探討餵食的順序為選第一隻編號k喜鵲餵食,下一隻被餵食的鳥是由這隻鳥開始,順時針接著沿著圓周數的第k隻鳥。接著編號r喜鵲,再由這隻鳥開始沿著圓周數的第r隻鳥,以此類推。但若餵到編號0斑鳩,會將食物吃光。探討喜鵲n隻,當食物n份、無限多份時,以及當餵食順序為順時針、逆時針交替時,所有喜鵲都吃到食物,其「位置排序」和小鳥數量之間的數學關係。並延伸討論(1)當斑鳩二隻位置相鄰時,(2)當喜鵲吃完一份食物後即飛走時。食物n份、所有喜鵲都吃到食物,其「位置排序」和小鳥數量之間的數學關係。

輕功水上漂之驚濤駭浪

水黽在水面上自在地的滑行,就想探索動態水面的表面張力。先設計用懸掛式的方式來測量表面張力,發現寬度愈大,可承載的重量越大,若加計沉陷的壓力差,則表面張力趨於一致。再測量兩根線接近時的承載力,發現距離小於 5mm,承載的重量隨距離的減少而減少,超過後則沒影響。當波前與壓克力板的方向平行時,在波谷時的向上加速度最大,此時水的表面張力不足以拉上壓克力,就會沉沒。波前與長邊垂直,當波浪來時,表面張力將前方向上抬升,後方要往下降,卻受到的表面張力的阻止,所以容易沉沒。推動鋁線快速前進時,鋁線前後方向上分力減少而沉沒。所以鋁線與前進方向垂直的比例愈多,最大前進速率愈小。依此做出表面張力移動底盤。

「非」天「頓」地-非牛頓流體阻尼的減震效果與建物即時監測研究

本研究探討非牛頓流體阻尼位於地上不同樓層及地下室的減震效果。我們以樂高動力積木搭配伺服馬達及程式控制器自製地震模擬器,體積較小,且能透過調整程式的功率模擬不同震度的S波,進而討論不同震度在相同變因中的差異。此外,我們為建築物設計地下室結構,並將非牛頓流體阻尼放入地下室外牆,觀察減震效果,實驗得知,地下室外牆放入阻尼皆較填入輕黏土更減震。同時,我們也製作不同長細比及不同建材的建築,分析數據後得出最減震、最具安全性的結構比例和建築材料。並比較建築上不同重心高度及搖晃時間長短對非牛頓流體減震效果的影響。最後,利用Arduino超聲波測距模組進行建築傾斜觀測,提高建築各面向的安全性。