Poly(ADP-ribose)polymerase-1 對細胞內DNA damage修補的調控
Poly(ADP-ribose) polymerase-1 (PARP-1)是一個細胞核內的酵素,它可以被因DNA damage\r 而形成的DNA片段活化,並將NAD(+)上的ADP-ribose轉載到結合蛋白質。這些結合蛋白質對\r 於DNA的合成、DNA的修補、以及細胞週期的調控都有關係。因此,PARP-1被認為是維持基\r 因完整性的重要角色。根據初步的研究,抑制PARP-1的活性對許多疾病的治療都可能有效,\r 其中包括癌症、心臟病、中風、糖尿病、發炎以及反轉錄病毒的感染。然而,以藥物抑制一\r 個對DNA修補這麼重要的酵素會有什麼潛在的問題呢?為了要得到解答,我們需要進一步了\r 解PARP-1在DNA damage反應的機能。在這一份報告中,我製造了一個失去活性的PARP-1突變\r 種,即E988K。經過對E988K詳細的研究,我將比較及分析PARP-1野生型與E988K之間不一樣\r 的互動蛋白質,希望能對PARP-1所控制的DNA修補有更進一步的了解。\r \r \r Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme activated by DNA strand breaks\r during DNA damage response and catalyzes the transfer of ADP-ribose units from the substrate NAD(+)\r to acceptor proteins. These acceptor proteins involve in modulation of chromatin structure, DNA\r synthesis, DNA repair, transcription, and cell cycle control. Thus, PARP-1 is believed to play an\r important role in maintaining genome integrity through modulation of protein-protein and protein-DNA\r interactions. PARP-1 has been the target for design of inhibitors for over twenty-five years. Inhibitors of\r the activity of PARP-1 have been claimed to have applications in the treatment of many disease states,\r including cancer, cardiac infarct, stroke, diabetes, inflammation and retroviral infection. However, are\r there potential problems associated with inhibition of this DNA-repair enzyme? To answer this question,\r we need to further understand the biological function of PARP-1 during DNA damage response. In this\r report, an enzyme dead mutant (E988K) of PARP-1 was generated. Detailed studies of E988K show that\r E988K could be used in the following studies. Compare and identify the different associated proteins of\r PARP-1 wild-type and E988K will shed light into the molecular mechanism of PARP-1-mediated DNA\r repair.
臉上真的有蟲嗎?~揭開蠕型?的真面目
I’ve heard a report on the internet that there are mites on the face, even a clean face, and I took an interest in doing a research. First, I found that on the face is Demodex, which lives and depends on human beings; besides, nearly seventy percent of people have these mites on their faces. To know more about the habit of Demodex, I sampled forty people of both sexes and different ages. The analysis, not correlating with sex and times of face washing, showed that more mites are found on the forehead than on other parts of the face, and there is more probability to find Demodex on the face of those who are older, those who have oily skin, and those who suffer from acne. I also observed that these mites are photonegative, often gather together in the hair follicles, and feed on sebum. Moved from the human body, Demodex is livelier in sesame oil than in other kinds of oils, but its life ends in about eight to ten hours and dissolutes at last. In addition, I tried to devitalize Demodex by various kinds of medicine, cleansers and cosmetics, but only those containing sulfer, eau de parfum, and the essence of rosemary or lavender are efficacious. 網路傳聞乾淨的臉上也有蟲,引起我探索的興趣,查探後發現是和人類片利共生的毛囊 蠕形?和皮脂蠕形?,初步調查顯示近70%的人臉上都有蟲。為了更了解蟲的習性,以年齡 與性別區分共在40 人臉上採集樣本,統整結果得知,額頭比其他臉上部位多、年齡越大、膚 質油的發現機率較大,但不受面皰多寡、性別、洗臉次數等影響;觀察後發現蠕形?以人類 的皮脂為食,經常群聚在人體毛囊中,離開人體後在芝麻香油中活動力較佳,但約8~10 小時 後就死亡分解導致無法繼續觀察其生活史,對光有明顯的負趨光性,最後試著用各種藥品減 低蟲的生命力,以薰衣草、迷迭香精油、毒藥香水和蜜花沉澱硫等較有效。
耐熱性酵素生產菌Bacillus Subtilis WLA12 之分離與定性
本實驗針對一取自台北縣烏來南勢溪下游之溫泉菌,進行微生物學、生物化學、分子生物學三方面之觀察與實驗,期能得到一可生產特定酵素之菌種,且具耐高溫之抗逆境能力。對其酵素進行定性,並嘗試轉殖出相關基因,使之可大量表現。目前已篩選出一種可生產多種酵素之菌種〔依其採集地點暫稱WL-A12〕經菌種鑑定為Bacillus subtilis WL-A12。藉由菌落檢測法以及Zymogram 的方式做酵素分析,並以電導轉形等技術,希望能成功轉至E. coli 上表現。另外,也對該菌種作了一些基本微生物方面的觀察〔如需氧情況、最適生長溫度〕。We isolated enzyme-producing thermophilic bacteria from hot springs near downriver of Nan-shi, Wulai, Taipei (北縣烏來南勢溪). Through microbiological, biochemistry and molecular biological analyses, a multiple enzyme-producing Bacillus subtilis strain, designated WLA12, has been isolated. The growth condition of WLA12 was observed. Using basic colony assay and zymogram analysis (gel electrophoresis) to observe the expressed enzymes, molecular weight and gene size of the enzymes were revealed. With comparison to E. coli control strain, the related enzymes were only found in WLA12. To express the Bacillus genes in E. coli, molecular cloning and gene transformation via electroporation was carried out.
溫變性轉(孵化條件對宮廷雞性別的影響)
目前生物學知識認為雉科鳥類的性別,在卵受精後即決定(WZ型),不受環境的影響,但是在本組一連串的實驗中發現,雉科鳥類的性別與孵化的溫度變化有非常大的影響,一般宮廷雞的孵化條件在濕度55%RH及溫度98℉~99℉,在此孵化條件下宮廷雞的子代♀:♂=1:1,若溫度降為97℉的孵化條件下所得子代♀性佔93%,倘若溫度升高為100℉的孵化條件下所得子代♂性佔92%,可見在比正常孵化溫度高的環境下宮廷雞的受精卵會轉變為♂性,而比正常孵化溫度低的環境下孵化的宮廷雞受精卵卻會轉變為♀性,本實驗續做了六代,結果大致相似,由此可以證明控制孵化溫度可以改變宮廷雞的性別,這一行為,可能與Z染色體上一個溫度依賴型的連鎖基因(DMRT1)之表現有關。 ;The temperature of hatching can affect Chinese silkys's sex It is now established that the sex of Pheasants is determined when the egg is impregnated, rather than by environmental factors. However, in a series of experiments, we find that the sex of Pheasants is strongly related to the temperature of hatching. In the normal hatching condition (humidity:55% RH ,temperature: 98.5℉), the ratio of female and male offspring of Chinese silkys is 1:1. If the temperature is lowered to 97℉, the female offspring occupies a proportion of 93%. If the temperature is raised to 100℉, the male proportion will reach 92%. We can thus derive the conclusion: the impregnated eggs of Chinese silkys will be transformed to male at a temperature higher than the normal one, while a lower temperature than the normal one will cause the impregnated eggs to be female. The experiments have been conducted through six generations of Chinese silkys, and the results are practically the same. This indicates that temperature changes can affect gender, This may be related to a Z-linked of DMRT1 gene on the DNA, which is temperature-dependent.
波動奇蹟—皂膜與皂水共振模式之研究
本研究探討肥皂膜與肥皂水的共振現象。在肥皂膜共振方面,我們以實驗探討皂膜的共 振模式與頻率的關係;並配合共振理論模型求出薄膜厚度,再與體積密度-厚度測量方法比 較。而又發現皂膜在共振時,皂膜保存時間較平常久,故進行皂膜生命期與頻率、強度的關 係。在進行肥皂膜實驗時,肥皂水滴落在喇叭上,振動出奇特的形狀,進而探討皂水共振的 特性並嘗試建立其數學模式。 ;The research is about the resonance of soap film and soapsuds. For the resonante of soap film, we tried to find out the relation between the resonant pattern and frequency by experiment; according to the resonante model, we measured the thickness of soap film, which was compaired with volume-dencity method. We found that the life-time of the resonant soap film is longer than the normal one, so we proceeded to study the relation between the life-time, frequency, and power. We observed special resonant pattern while the soapsuds fell down on the speaker. So we studied the characteristics of resonant soapsuds, trying to make the mathematical pattern of resonant soapsuds.
繪身繪影-正三角形磁磚設計方法與碎形密舖之研究
本研究主要以正三角形作為基本單元,透過窮舉討論得到正三角形邊的作用方式只有五種,再經由排列組合歸納出11 種正三角形密鋪磁磚設計方法。進一步,運用我們的研究結果,配合數學簡報系統製圖,創作新圖樣,也彌補了Escher 在手繪時所造成的誤差,達到完全密鋪的效果。碎形磁磚的部份,我們也依據其背後的數學理論創作幾套結構圖,利用結構解析,碎形密鋪磁磚將變得十分容易,學習者將可輕鬆製作富有創意的新圖樣。 ;This research mainly takes the regular triangle as the basic unit. Through the enumeration, we obtain that there are only five operations for edge of the regular triangle, and then 11 kinds of regular triangle design methods are induced. Even more, utilizing our findings and Mathematical Presentation System (Math PS), we created the new pattern which makes up Escher’s errors and achieves the tiling. As to Fractal Tiling, we create several sets of structure drawings according to its mathematics theory. Using structure analysis, the Fractal Tiling will become extremely simple, and the learner can make the rich creative new pattern easily.
聽音辨位--聲波的測量應用
本實驗設計主要是以波的傳送速度(特別是聲波),以及接收收到的時間值來做實驗、運算、討論。而其特點是為了應用於實際生活中,做了許多異於平常測量方法的設計。主要是使用時間差(|t1–t2|V=發聲器到兩感應器的距離差 )來消彌掉一般測量時,需要採取同步的條件,說明如下:
1. 由以上的圖中,t1’ = T + t1 為實際由感應器開始感應到感應器#1 接收到訊號的時間;同理,t2’ = T + t2 為實際由開始感應到感應器#2 接收到訊號的時間。而T 為感應器開始感應到發聲器開始發聲的的時間(之後的 T 皆為如此)。由以下式子得知:
|t1’ - t2’|=|( T + t1 ) - ( T + t2 ) |=|t1 - t2|及為本實驗所需的時間差。利用減法將T 消除,便及為發聲器與感應器不必採取同步,此為本實驗目標以及優點之一。
2. 之後的公式推導中,實際由感應器開始感應到感應器接收到訊號的時間中,表示為t1、t2、t3……以此類推。
像是市面上販售的反射式測距器由於其直線性的限制,在我們可負擔的情況下,就只能做一維的測量,而在本實驗中,我們使用多個感應器,而可測量至二、三維空間,並使測出的物體由相對位置轉為絕對位置。再加上正在計劃中的測量儀器改良與自製,例如利用電腦的音效卡接上麥克風或是其他感測器,以及電子零件、電路的組合與設計。而在於一般的實際應用面上可配合工業的破壞性檢測,甚至是橋樑的斷裂處、各種振源的測量,亦或是人員的搶救,都應有不錯的效果與利用價值。
1.The major design of experiment is to spot the location of an object by experiment, calculating and discussing of such figures like the transmission speed of the waver (especially sound wave), plus time value of the receptor and so on to get the result. 2.In practice, the ordinary measuring method has to be implemented under the circumstance of synchrony: however, the distinguishing characteristic in the experiment is to overcome such restriction with the use of the “time lapse” concept. 3.The reflecting measuring instrument on the market is limited by its “straight-line characteristic.” Instead, we use multiple sensors to spot the absolute location of an object in its 1-D, 2-D, 3-D form. 4.We have now been working on the improvements of the measuring instruments, for instance, using sound cards to connect to the microphone to make a new sensor; also, the redesign and combination of other electric parts and circuits are also under construction. 5. We plan to apply the experiment not only in spotting the location of an object but also in further spotting the location of vibration coming from various objects (e.g. in the use of rescue).