你喝下了多少?-台灣市售優酪乳乳酸菌生長力及抗酸性之探討
現今乳酸菌飲料風行,但是乳酸菌是否真能通過胃酸的考驗,到達腸道進行複製,利益人體?我們首先以市售乳酸菌粉(加拿大Rosell 公司,含二種菌,暫時命名為"小毛"及"小白")為預測菌種,利用分光光度計測定乳酸菌於Thioglycollate 培養基中的生長能力(OD600)。小毛在pH 值 1、 3 、5、 7 時之生長力分別為0、 0.008 、0.682 、0.847 ,小白為 0、 0.015 、0.973、 0.636。若於培養基中添加不同濃度的螺旋藻熱分解物,如加入0.01%的添加物後,小毛在以上各種pH 值生長力分別為0.042、1.291, 、1.447, 、1.213 ,小白為 0.053、1.392、 1.531、 0.988,意外發現可大幅提升菌的生長力及抗酸力。再取台灣市售4 種廠牌優酪乳(以甲、乙、丙、丁代表之),分離乳酸菌,再於各種pH 值中培養。結果在pH 3 時,螺旋藻熱分解物僅對丙廠牌有效, 乙廠牌無效, 甲與丙則有無填加生長力都很差。在pH 1 時, 則對乙、丙、丁皆有效,故建議廠商慎選菌種,並於製程及成品中添加螺旋藻熱分解物。The yogurt is a popular drink. But whether the lactobacilli inside can resist the destruction of gastric acid and grow well in the intestinal tract is still questionable. We used pure lactobacilli powder (Rosell Company, Canada, containing two bacteria named in this report as "Little Hair" and "Small White") for pre-test. The growth ability in thioglycollate medium was determined by spectrophotometer (OD600). The results of bacterial growth at pH 1, 3, 5, and 7 for "Little Hair" were 0, 0.008, 0.682, and 0.847, respectively. Those for "Small White" were 0, 0.015, 0.973, and 0.636, respectively. After supplement with 0.01% of the boiled lysate of Spirulina algae (ProBio Biotech, Taiwan), growth abilities at pH 1, 3, 5, and 7 for "Little Hair" were 0.042, 1.292, 1.447, and 1.213, respectively. Those for "Small White" were 0.053, 1.392, 1.531, and 0.988, respectively. The algae extract amply promotes the growth and acid-resistance, especially at pH 3, of these bacteria. The lactobacilli isolated from four different products of yogurt in Taiwan, named as A, B, C, and D, were then tested as above. Results showed the supplement with the boiled lysate of Spirulina algae was very effective, at pH 3, for promoting growth of C, but not effective for B. Growth abilities of both A and D were very unsatisfactory with or without this supplement. At pH 1, algae lysate supplement significantly improved the growths of B, C, and D. Therefore, this supplement in culture and product for yogurt preparation was suggested.
聽音辨位--聲波的測量應用
本實驗設計主要是以波的傳送速度(特別是聲波),以及接收收到的時間值來做實驗、運算、討論。而其特點是為了應用於實際生活中,做了許多異於平常測量方法的設計。主要是使用時間差(|t1–t2|V=發聲器到兩感應器的距離差 )來消彌掉一般測量時,需要採取同步的條件,說明如下:
1. 由以上的圖中,t1’ = T + t1 為實際由感應器開始感應到感應器#1 接收到訊號的時間;同理,t2’ = T + t2 為實際由開始感應到感應器#2 接收到訊號的時間。而T 為感應器開始感應到發聲器開始發聲的的時間(之後的 T 皆為如此)。由以下式子得知:
|t1’ - t2’|=|( T + t1 ) - ( T + t2 ) |=|t1 - t2|及為本實驗所需的時間差。利用減法將T 消除,便及為發聲器與感應器不必採取同步,此為本實驗目標以及優點之一。
2. 之後的公式推導中,實際由感應器開始感應到感應器接收到訊號的時間中,表示為t1、t2、t3……以此類推。
像是市面上販售的反射式測距器由於其直線性的限制,在我們可負擔的情況下,就只能做一維的測量,而在本實驗中,我們使用多個感應器,而可測量至二、三維空間,並使測出的物體由相對位置轉為絕對位置。再加上正在計劃中的測量儀器改良與自製,例如利用電腦的音效卡接上麥克風或是其他感測器,以及電子零件、電路的組合與設計。而在於一般的實際應用面上可配合工業的破壞性檢測,甚至是橋樑的斷裂處、各種振源的測量,亦或是人員的搶救,都應有不錯的效果與利用價值。
1.The major design of experiment is to spot the location of an object by experiment, calculating and discussing of such figures like the transmission speed of the waver (especially sound wave), plus time value of the receptor and so on to get the result. 2.In practice, the ordinary measuring method has to be implemented under the circumstance of synchrony: however, the distinguishing characteristic in the experiment is to overcome such restriction with the use of the “time lapse” concept. 3.The reflecting measuring instrument on the market is limited by its “straight-line characteristic.” Instead, we use multiple sensors to spot the absolute location of an object in its 1-D, 2-D, 3-D form. 4.We have now been working on the improvements of the measuring instruments, for instance, using sound cards to connect to the microphone to make a new sensor; also, the redesign and combination of other electric parts and circuits are also under construction. 5. We plan to apply the experiment not only in spotting the location of an object but also in further spotting the location of vibration coming from various objects (e.g. in the use of rescue).
繪身繪影-正三角形磁磚設計方法與碎形密舖之研究
本研究主要以正三角形作為基本單元,透過窮舉討論得到正三角形邊的作用方式只有五種,再經由排列組合歸納出11 種正三角形密鋪磁磚設計方法。進一步,運用我們的研究結果,配合數學簡報系統製圖,創作新圖樣,也彌補了Escher 在手繪時所造成的誤差,達到完全密鋪的效果。碎形磁磚的部份,我們也依據其背後的數學理論創作幾套結構圖,利用結構解析,碎形密鋪磁磚將變得十分容易,學習者將可輕鬆製作富有創意的新圖樣。 ;This research mainly takes the regular triangle as the basic unit. Through the enumeration, we obtain that there are only five operations for edge of the regular triangle, and then 11 kinds of regular triangle design methods are induced. Even more, utilizing our findings and Mathematical Presentation System (Math PS), we created the new pattern which makes up Escher’s errors and achieves the tiling. As to Fractal Tiling, we create several sets of structure drawings according to its mathematics theory. Using structure analysis, the Fractal Tiling will become extremely simple, and the learner can make the rich creative new pattern easily.
金字塔附近的流體力學效應
陸地上的金字塔無時無刻沒有受到氣體的包覆,這個實驗透過風洞模擬金字塔模型,在流體中的壓力變化,並藉由煙線來觀察流體的移動情形,可具體看到當流體經過物體週遭時流場的改變。經由測量壓力,可更深入的探討風速與壓力的關係。在實驗中,可發現當流體迎面而來,在金字塔後方形成的流場變化中,以渦流最易觀察;且透過壓力的測量,發現模型的前、後方,會有明顯的壓差,會對模型造成力矩,可能會使金字塔結構不穩定。越往金字塔上方壓差越小,因此其受阻力所產生的合力矩應較同底面積、同高的長方體小,故金字塔可以長久在沙漠中屹立不搖。此外,流體流過模型兩側會產生分離的情況,分離點的位置會影響渦流區的大小;一般而言,分離點發生在物體的越後方,尾流的尺寸越小,壓差所造成的阻力越低,實驗中發現流速對分離點的位置影響不大,金字塔的擺放形狀卻會對分離點的位置產生明顯的影響,所以越流線型的物體,其受到壓差所產生的阻力越小。希望透過以上的研究,能夠對金字塔周圍複雜的流場有更深入的了解。The pyramid on land is constantly surrounded by gas. Using the wind tunnel, we can investigate the distribution of pressure surrounding the model of pyramid; furthermore, we can discuss about the relationship between pressure and wind velocity. In addition, with the smoke wire, we can visually observe the dynamic flow filed. In our experiment, we discovered that when fluid comes, there will be obvious difference of pressure between the front and the back of the pyramidal model, causing a torque to the model. At higher parts of the model, there is less difference of the pressure, so the resulting torques of a pyramid should be less than that of a cuboid. Therefore, a pyramid can stand in the desert for a long time. Besides, when the fluid flows through the two sides of the model, it will separate, and the position of the separation points will influence the size of the turbulence area. Generally speaking, the farther the separation points are to the back, the smaller the size of the turbulence area, and the less the drag caused by the difference of pressure. With the study above, I expect to have more understanding about the complex flow field of pyramid.
關於渦旋
A professor once told me that scientists have already known a lot about vortices, but less about how to tackle with them in here and there cases. As to my mind, this means knowing by halves. As a matter of fact, I gradually found that human may not know more than a dragonfly! A dragonfly flying in a figure of eight pattern does know about Vortices Recycling. The highlight of the experiment is the hovering ability upon a fixed point in the air. Who can stay longer will be the king of Vortices. Sometimes I am not so optimistic about mimicking a fly or a bat, but I am really very interesting in discovering which flying mechanism is more effective,『Fling Mechanism』 or 『In a figure of eight pattern』, if with the same weight and energy? How to implement their mechanism in our flying machine? It is always the best policy to do naturally with vortices. The conservation of vortices is found here and there. Vortex itself is energetic. To gain means to keep. The one who is able to keep vortices will be rewarded. As in life generation and the ability of hovering, the rule follows. Typhoons and tornados still threat us like the beasts. And what’s more, a jumbo-airplane was crashed as beaten by tip vortices of the former airplane. As the dragonflies, the beautiful acrobats of vortices , infuse in tip vortices. Not the strong contradistinction did we realize that it is time for vortices!研究渦旋已經四年。四年之中,涉獵了許多關於渦旋的實驗。當我越了解渦旋,就越佩服那些卓越的昆蟲朋友們,他們可說是調配利用渦旋的大師。從候鳥遷徙的V字型隊伍、海豚的渦旋氣球、到蜻蜓八字型的飛行機制,我很想知道:在一個固定的流場中,到底哪一種運動機制,能最有效率的提供上升的力量?而如何將昆蟲朋友們的高超技術,運用到人類飛行載具上?將是我有興趣的另一項課題。『關於渦旋』是一系列渦旋實驗,目的就是自基礎開始深入了解在地球這樣環境下渦旋的性質。(一)探討基礎的渦旋本質(二)產生相對運動下物體的的渦旋架構(三)物體取得升力和失去升力的要件(四)昆蟲飛行機制探密(五)未來展望與渦旋的運用經過長時間的觀察可以了解到:1、渦旋遵守動量守恆。是以渦旋出現時是成對的2、渦旋是具有能量的。在上升力取得方面,當攻角過大時,渦旋剝離,造成能量的損失;以至於飛行載具失速。而蜻蜓是保有渦旋並加以利用的高手,自然事半功倍。順勢而為,渦旋增強。
網路監控與家庭自動化系統之研究
The paper presents a new technique for the Internet monition and control system. The user not only can “watch” the current operation of remote home appliances from the client computer, but also directly control the behavior of remote home appliances through the Internet network. In the mean while, concerning the interface between users and appliances, the virtual reality is combined into the system so that users operate the system easily. First, virtual reality, CGI , HEML . I/O control code, 8255 I/O card and CCD are applied in the server computer to control and “watch” home appliances. Next, the client computer is connected to the sever computer through the Internet WWW(World Wide Web) network. Then, the user can control remote home appliances directly through the homepage. Finally, the experiment results are presented and discussed.本研究提出一種高效率且易維護的網路監控技術,從遠端確實“看”到監控系統現場動作,並下達控制指令。同時顧慮到使用者操作介面,結合虛擬實境,讓使用者可更輕鬆操作。首先,伺服端結合VR(虛擬實境)、CGI技術、基本的HTML、I/O控制指令、8255 I/O介面卡及CCD(網路攝影機),應用於家用電氣,接著用戶端透過WWW全球資訊網連上伺服端首頁,然後依首頁之畫面,來達到遠端監控與家庭自動化之目的。
凸多邊形完美分割線的尋找
1) First, we studied the properties of lines and segments that bisect a triangle’s perimeter. By observing the properties, we found a “revolving center” what we defined. We employed the revolving center in the construction with ruler and compass to make “triangle’s perimeter bisectors” that pass the points we desire. Later, we found out the “envelope\r curves’” equations of the “perimeter bisectors” on the triangle’s two sides are parabolic curves. Moreover, the focus of this parabolic is just as same as the revolving center. 2) The curves envelope of area bisectors formed a hyperbolic curves. By similar method of constructing a “perimeter bisector”, we can also construct an “area bisector”’ by using the hyperbolic curve’s focus. We accidentally found out that we can construct the tangent of the conic by using our method, too. Different from the information we found, It supplies a easier method to construct the tangent of a conic. 3) With the rules of constructing perimeter (area) bisectors, we can expand the method to constructing the “perimeter (or area) bisectors” of any convex polygons. 4) We call the lines that bisect the convex polygon’s perimeter and area at the same time the "perfect bisect lines”. Based on the properties of the” perimeter bisectors” and the “area bisectors” in our research, we found out that the” perfect bisect lines” pass the intersection of the” perimeter bisector’s effective segment” and the hyperbolic. Thus, we can construct the “perfect bisect lines”. Moreover, we proved the esistence of the “perfect bisect lines.”1. 首先我們先探討三角形等分周長線的性質,利用性質及觀察等周線的變化,我們找到可利用本研究所稱的「旋轉中心」,以尺規作圖的方式,作出「任意點的三角形等分周長線」。接著我們導出三角形兩邊上等周線所包絡而成的曲線方程式為一條拋物線的曲線段。進而發現上述的旋轉中心,即為等周線所包絡而成拋物線的焦點。2. 三角形兩邊上等積線所包絡出的曲線是一條雙曲線的曲線段。利用等周線的尺規作圖,我們找到同樣可利用焦點當旋轉中心做出等分面積線。意外的發現出圓錐曲線的切線作圖,皆可利用我們的研究方式(有別於已查出的文獻上記載),較快速的作出切線。3. 利用三角形等周線(或等積線)的尺規作圖,可擴展到「過任意定點作出凸多邊形的等周線(或等積線)」。4. 我們將同時分割凸多邊形等周長與等面積的分割線稱為「完美分割線」。利用三角形研究出的等周線與等積線相關性質,我們找出完美分割線必通過同角的等周有效段與等積曲線段之交點。利用這結果可作出完美分割線。並進一步,我們證明出凸多邊形完美分割線的存在性。
免疫治療的新展望:從一個疾病的動物模式,探討樹突狀細胞的培養與分析
胰島素依賴型糖尿病(insulin-dependent diabetes mellitus; IDDM)是一種胰島素無法正常分泌的自體免疫疾病;而NOD老鼠(non-obese diabetic mouse,NOD)的病徵與其非常相似。藉由觀察NOD老鼠發病前後外顯行為及疑導組織切片的差異,我們認為胰島素依賴型糖尿病的致病機轉是因為T細胞工及胰島組織中製造胰島素的β細胞,使胰島素分泌不足而引起糖尿病;而樹突狀細胞(dendritic cell,DC)是調控淋巴細胞反映的重要調節細胞,未來可望利用樹突狀細胞進行胰島素依賴型糖尿病的免疫調控治療。本實驗即是利用IL-4、GM-CSF使NOD老鼠的骨隨幹細胞分化樹突狀細胞,並藉由控制NOD老鼠的年紀與的數突狀細胞培養天數,希望取得較多的數突狀細胞,以利未來免疫治療之用。Insulin-dependent diabetes mellitus (IDDM) is a spontaneously occurring autoimmune disease in which cellular immune components mediate destruction of the insulin-producing βcells of the pancreas. It begins with an asymptomatic stage during theβcells are gradually destroyed. These patients have to depend on injecting insulin to lower their blood glucose, facing the dander of being infected. So we want to research into the cause of IDDM by model animal- NOD mouse (non-obese diabetic mouse). We observe the differences of exterior behavior and sections of pancreas organization between NOD mice and normal ones. It has been shown that the immunophological mechanism of IDDM is T cells destroy βcells of genetically predisposed individuals and result in insufficiency of insulin-producing. Dendritic cells(DC), having great Ag-presenting ability, are related to IDDM. We cultivate bone marrow stem cells of 5-week-old,8-week-old, and 21-week-old NOD mice treated with IL-4,GM-CSF and make them differentiate into dendritic cells. The result shows that using 8-week-old NOD mice to cultivate will get the largest amount of dendritic cells. We also compare the percentage of differentiated DCs for 6 days’ culture with 9 days’,and we find that 9 days’is better. Dendritic cells are the effect Antigen-presenting cells which can be used for immunotherapy of IDDM , though , its complicated mechanism still needs further researching and developing. We hope in the future IDDM patients could get rid of the suffering of injecting insulin in their whole life.