Project M.I.R.A.S
1.1 Short project summary My project involves the conceptualization and development of an innovative approach to modular self-assembling robotic systems. Through its ability to form any complex configuration, the system is highly adaptable to various scenarios and environments. Before delving deeper into the details of my project, I will provide an overview of my background and motivations. 1.2 Background Ever since I first watched the movie "Big Hero 6", I felt amazed by the applications of the so called “microbots”. From that point on, it made me always wonder what would be possible in the real world. When I did the research, I stumbled upon this field of modular robotics. Initially, I was unsure whether to embark on a project focused on electronics and robotics due to my background in programming. On the other side, this year gave me a chance to see the incredible performances of various projects at different science expos. Besides, I took part in the program of CANSAT LU and learned a lot during it, such as microchips, the control of miniature robotics, and the sensors of it. Finally, at school, I took the option Electronics where we dig into similar topics. With this accumulated knowledge and experience I felt confident enough to start this project.
Low-Cost Nickel-based Catalyst for Electrocatalytic Splitting Of Ammonia Towards Clean Hydrogen Production
Increasing energy needs alongside the urgent issues of chemical pollution has prompted the need for developing novel green energy sources. Nitrogen-based fertilizers are of fundamental importance for the ecosystem as their usage has increased eight times in the last fifty years [1]. On the other hand , increased use of nitrogenous fertilizers is followed by higher ammonia emissions, which are dangerous pollutants responsible for deterioration in biodiversity by means of eutrophication, acidification of soil and water, and climate change [2]. Ammonia has the2apacityy to bond with other pollutants including sulfur oxides and nitrogen oxides to create particles that cause smog, which is associated with lung disease. Ammonia also increases frost sensitivities and causes necrosis of many plant species [3.] Therefore, there is a need to properly manage the ammonia-rich nitrogen waste to decrease the environmental threat factors. Of the possible approaches suggested for ammonia waste treatment, the ammonia electro-oxidation reaction (eAOR) has various promising features for application in the energy sector. It is economically appealing because Ammonia can serve as an excellent hydrogen carrier due to its storage capabilities and existing transport infrastructure alongside having no net carbon emissions. Apart from this, it requires 95% less of the theoretical energy [4] to perform the process. But the reaction is kinetically slow [5], which has been a research obstacle during the development of (eAOR), due to factors ofmslow reaction rate and large catalytic overpotential that this process consumes an unnecessary amount of power [6]. Nickel-based catalysts are a promising solution to these problems, they are cheaper , more stable and easier to produce than electrocatalysts for water electrolysis which makes it highly energy efficient for widespread use on the industrial scale. N films deposited on the anodic side also allow the creation of N-containing products such as (NH42SO3) and nitrates, which can be converted into fertilizers or renewed into the nitrogen cycle to make the process more environmentally friendly while enhancing the (eAOR) process [7,8]. Compared to Pt and Ir which are the most used noble metals, they are less poisoned on the potentials less than 0.65V and are more stable [9,10]. However , noble metals are scarce, and their cost is high for industrial applications as well as the energy they waste during (eAOR) [11].
Developing a Heart-Rate Monitoring App to Help Families in Identifying Mood Changes for Children Diagnosed With Neurodivergence
This study dives into the benefits of a heart rate (HR) monitoring application to aid families in identifying mood changes in children diagnosed with neurodivergence. Children with neurodivergence often struggle with communicating their emotions, which often results in tantrums or emotional outbursts, and this study plans to address this by creating an app that detects users’ HR to calculate heart rate variability (HRV) and detect when the user’s heart rate variability (HRV) levels become higher than usual. Heart-rate variability is defined as a small variation of the interval between every heartbeat, it’s calculated with the formula of . By looking at the developments of these small variations, it will be 60/𝐵𝑃𝑀 × 1000 easier to notice then the interval for heartbeats are shorter, meaning the body is in need of more blood pumped quickly for support. The app is connected to a heart rate sensor that is worn by the user. The heart-rate sensor frequently uploads data to the app which the app processes and carefully observes while looking for any sudden, dramatic change. The sensor and app was tested and proved to meet the expected requirements of functionality. Four participants with neurodivergence were asked to equip the heart-rate sensor and results showed that different developments of heart-rate variability were able to be detected by the app, these participants varied in their type of neurodivergence as well as their age. As an example, the third participant showed the purpose of the app most visibly, having a resting heart-rate of 86 BPM (697.67 ms) turning into a high 107 BPM (561.68ms) after changing activities. When the user’s sensor detects a sudden spike in heart-rate variability, the app notified the parent account about this change in emotion. This study has supported the relevance of using heart-rate variability to observe changes in mood.