全國中小學科展

醫學與健康科學

以果蠅建立單純型表皮水皰症(EBS)模型、建立藥物篩選流程並以雙醋瑞因(Diacerein)進行測試

遺傳性表皮分解性水泡症(EB)是種罕見疾病,因突變使角蛋白異常,造成表皮組織脆弱易形成水泡,單純型水泡症(EBS)是最常見的類型。此計畫旨在:(一)建立果蠅EBS疾病模型;(二)探討溫度對病徵的影響;(三)以此果蠅EBS疾病模型發展藥物篩選平台。初步使用Diacerein測試,評估對EBS症狀的改善效果。 目前顯示突變角蛋白K5/K14R125C會形成積聚體,與正常K5/K14形成的角蛋白網絡不同;全程25℃培養,約32%果蠅翅膀有水泡,亦符合EBS病徵。篩藥平台建置已完成色素和溶劑DMSO劑量測試,初步顯示Diacerein有助病徵緩解。目前將擴大統計不同溫度對 EBS果蠅死亡率、水泡發生率和角蛋白積聚形成比例。希望以本研究建立的果蠅EBS疾病模型與篩藥平台,能為罕見遺傳疾病療程開發奠定基礎。

探討環形 RNA circACTN4 在非小細胞肺癌中的特性及功能

肺癌是世界上死亡率第一的癌症。根據近期研究發現,環形RNA (circular RNA;circRNA)比一般的線狀 mRNA穩定,並且會調控癌細胞。但circRNA於肺癌中的調控機制仍不清楚,因此我們決定挑選一個circRNA作為研究對象。首先,我們從 GEO 公開資料庫中篩選肺癌病人中差異表現的 circRNA,經 qPCR在肺癌細胞株驗證後,最終找到circACTN4 進行後續的研究。實驗結果顯示 circACTN4 在肺癌細胞株中確實為環狀結構,內生性表現量上升,且大都分布在細胞質。使用siRNA降低 circACTN4 表現量後,會增加細胞停留在細胞週期之G1期的數量,且 CDK4 和 CCND1 蛋白量也會降低。因此我們推測 circACTN4 可以促進肺癌細胞增殖的效果。更進一步的研究揭示,circACTN4能與LRPPRC蛋白結合,這種相互作用可能是circACTN4在肺癌中發揮調控作用的關鍵機制。總上所述,circACTN4 會促進肺癌細胞的生長,盼未來能作為預後的指標,並發展為治療肺癌的新標的。

Non-Invasive Vagus Nerve Stimulation as a Novel Therapy for Alzheimer’s Disease by Enhancing the Brain Clearance System(非侵入性迷走神經刺激術作為阿茲海默症的新療法—透過增強大腦清除系統)

阿茲海默症(AD)是導致失智症的主因,影響全球數千萬人。然而,AD目前的藥物大多昂貴且療效有限。目前已知腦內β類澱粉蛋白(Aβ)斑塊為AD的病理特徵,且大腦清除系統被認為對AD的治療具有重要性。先前研究發現非侵入性迷走神經刺激術(nVNS)增加腦脊髓液循環,但在神經退化疾病中的機制和應用尚不明確。本研究旨在探討nVNS增強大腦清除系統來作為AD新療法之成效,使用Aβ誘導之AD小鼠模型,利用巨視顯微鏡和免疫組織化學染色評估其膠淋巴系統功能,並以新奇事物測試評估認知功能。本研究發現於AD小鼠中,給予nVNS使大腦清除系統之水通道蛋白-4顯著增加、促進膠淋巴系統,進而改善認知功能。本研究首次發現nVNS可通過增強大腦清除系統功能,進而改善AD病理引起的失智症狀,支持nVNS作為AD新療法的可行性。

吲哚類化合物抑制神經膠質母細胞瘤及癌幹細胞之潛力

癌症幹細胞被認為是癌症會復發的主因,本研究著眼於探討新合成吲哚類化合物對癌細胞及癌幹細胞的效應與可能的作用機制。透過體外細胞實驗,我們使用不同神經膠質母細胞瘤細胞株,評估化合物對細胞增殖、存活和凋亡的作用。接著以類癌幹細胞球篩檢評估化合物對癌症幹細胞的影響。研究結果顯示,該化合物對神經膠質母細胞瘤及其癌幹細胞皆有一定程度的抑制效果。 同時,透過分子生物學技術,研究化合物的分子作用機制,結果顯示化合物能對細胞生長和凋亡的路徑產生影響。研究結果有望提供對候選抗癌藥物在細胞水平的效能、選擇性以及對癌幹細胞的特異性反應的深入理解。 期望本研究成果可為癌症治療藥物的開發提供重要參考,並促使對癌症治療新方法的探索。這將有助於確定更具潛力的藥物候選者,為癌症治療領域帶來更具前瞻性的解決方案。

探討肝癌細胞中動力蛋白抑制對於癌症轉移的影響

肝細胞癌 (HCC) 為全球導致高死亡率的癌症之一,第一線標靶治療藥物 Sorafenib 雖能延長患者存活期,但其療效有限且伴隨嚴重副作用。在癌症中,中心體異常所導致的染色體變異是腫瘤發展的關鍵因素,而動力蛋白已知參與中心體裝配,且前人研究結果表明動力蛋白與肺癌、 HCC 等多種癌症有關連 。故本研究先透過基因表現資料庫分析,發現 HCC患者中的動力蛋白重鍊基因表現量大致顯著高於一般,後以 Ciliobrevin D 抑制三種 HCC 細胞株 Hep3B、HepG2、Huh-7 中的動力蛋白,並藉細胞存活率分析、遷移試驗與西方墨點法,探討抑制動力蛋白與 HCC 的關聯。據實驗結果,抑制動力蛋白後, Huh-7 的遷移速率減緩, 蛋白質表現量亦隨抑制劑濃度升高而降低。這表示抑制動力蛋白具有抑制肝癌細胞轉移的潛力,期未來能成為肝癌新的治療靶點。

YKT6與癌纖維母細胞的「泌」密關係

本研究以人類肺癌A549細胞株和纖維母細胞模擬體內腫瘤微環境,挖掘纖維母細胞如何促進癌細胞的生長。從病人的正常和癌組織提取癌相關纖維母細胞(cancer-associated fibroblasts, CAFs) 和 正常纖維母細胞(Normal Fibroblasts, NFs),經過基因序列一對對作分析,開發新的治療策略和潛在的靶點。利用核糖核酸定序(RNA-Seq)分析發現CAFs會比NFs分泌更多SNARE 蛋白 YKT6,而更深入地探究獲悉YKT6會透過活化YKT6+CAFs途徑促進肺癌A549細胞惡化,此惡化過程包括誘導及提升癌細胞的生殖(proliferation),轉移(migration)和入侵(invasion)能力。 此外,在 CAFs 中敲除 YKT6基因,減弱CAFs 的外泌體(exosome)釋放,從而調節了其對肺癌細胞A549的腫瘤促進作用。本研究發現靶向YKT6並抑制外泌體分泌,從而降低CAFs對肺腺癌細胞的腫瘤支援功能可以為肺癌治療提供一種新的策略。

Non-Invasive Vagus Nerve Stimulation as a Novel Therapy for Alzheimer’s Disease by Enhancing the Brain Clearance System(非侵入性迷走神經刺激術作為阿茲海默症的新療法—透過增強大腦清除系統)

阿茲海默症(AD)是導致失智症的主因,影響全球數千萬人。然而,AD目前的藥物大多昂貴且療效有限。目前已知腦內β類澱粉蛋白(Aβ)斑塊為AD的病理特徵,且大腦清除系統被認為對AD的治療具有重要性。先前研究發現非侵入性迷走神經刺激術(nVNS)增加腦脊髓液循環,但在神經退化疾病中的機制和應用尚不明確。本研究旨在探討nVNS增強大腦清除系統來作為AD新療法之成效,使用Aβ誘導之AD小鼠模型,利用巨視顯微鏡和免疫組織化學染色評估其膠淋巴系統功能,並以新奇事物測試評估認知功能。本研究發現於AD小鼠中,給予nVNS使大腦清除系統之水通道蛋白-4顯著增加、促進膠淋巴系統,進而改善認知功能。本研究首次發現nVNS可通過增強大腦清除系統功能,進而改善AD病理引起的失智症狀,支持nVNS作為AD新療法的可行性。

治癌良「芝」—探討樟芝萃取物對口腔癌幹細胞的影響

研究旨在檢測牛樟芝菌絲萃取物4-Acetylantroquinonol B和Antrodin C對口腔癌幹細胞的影響。過去研究發現細胞膜蛋白CD44的表現與癌幹性有密切關係,因此本實驗著重於追蹤CD44的表現情況。透過3D懸浮培養獲得腫瘤球來擴增癌幹細胞群並用流式細胞儀分析。隨著兩種牛樟芝萃取物的濃度增加,CD44表現量下降,顯示此二化合物可能可以抑制其表現。實驗顯示牛樟芝萃取物不僅抑制癌幹細胞的存活率,且在低濃度下顯著抑制成球效率,還能促進癌幹細胞的凋亡。研究結果說明牛樟芝萃取物對癌幹細胞有影響,而這個發現可能可以提供潛在的治療靶點,有益未來口腔癌治療發展。

以果蠅建立單純型表皮水皰症(EBS)模型、建立藥物篩選流程並以雙醋瑞因(Diacerein)進行測試

遺傳性表皮分解性水泡症(EB)是種罕見疾病,因突變使角蛋白異常,造成表皮組織脆弱易形成水泡,單純型水泡症(EBS)是最常見的類型。此計畫旨在:(一)建立果蠅EBS疾病模型;(二)探討溫度對病徵的影響;(三)以此果蠅EBS疾病模型發展藥物篩選平台。初步使用Diacerein測試,評估對EBS症狀的改善效果。 目前顯示突變角蛋白K5/K14R125C會形成積聚體,與正常K5/K14形成的角蛋白網絡不同;全程25℃培養,約32%果蠅翅膀有水泡,亦符合EBS病徵。篩藥平台建置已完成色素和溶劑DMSO劑量測試,初步顯示Diacerein有助病徵緩解。目前將擴大統計不同溫度對 EBS果蠅死亡率、水泡發生率和角蛋白積聚形成比例。希望以本研究建立的果蠅EBS疾病模型與篩藥平台,能為罕見遺傳疾病療程開發奠定基礎。

Production of Nano-Composite Artificial Bone Tissue Using Bioceramic Synthesis from Bio-Waste

Certain specially structured ceramics, which can be used as biomaterials to replace bone, have recently started being utilized in the medical field. The aim of this study is to produce high-bioactivity silica from corn cob waste, a widely available organic material in nature, and combine it with calcium oxide (CaO) obtained by grinding organic mussel shell waste with high bioactivity. This combination is intended to synthesize dicalcium silicate (2CaO.SiO₂) to develop an alternative tissue scaffold with high bioactivity, capable of replacing bone, for existing titanium alloys. The goal is to incorporate this scaffold into PEEK (polyether ether ketone), a novel tissue scaffold material, at varying percentages to create a next-generation innovative bone substitute material. An additional objective is to demonstrate through biocompatibility tests that the produced ceramic-polymer biocomposite exhibits antibacterial activity against Staphylococcus aureus.