全國中小學科展

醫學與健康科學

降脂轉肌–將脂肪轉變成肌肉的可能性探討

先前研究發現一種多元不飽和脂肪酸 15-keto-PGE2 能減少肌肉慢性發炎以及增加肌肉生長因子胰島素的敏感性,具有增加肌肉的潛力。我們探討此脂肪酸在小鼠中將脂肪組織轉成肌肉組織的可能性。 我們先以 15-keto-PGE2 治療肥胖型肌少症小鼠後,再以全基因組mRNA定序,發現在小鼠皮下脂肪中,肌肉特異基因表現量高度上升。透過基因表現路徑分析軟體 GSEA證實此脂肪酸會高度引發皮下脂肪中,與肌肉分化、肌肉收縮與肌肉結構相關的生物路徑。另外, 15-keto-PGE2 也可以誘導脂肪前驅細胞3T3-L1中與肌肉生成相關的基因表現。 最後,我們發現以 15-keto-PGE2 治療的老年肥胖型肌少症小鼠,體重、血糖、脂肪比例下降,肌肉質量及力量上升,證實了它在體內同時減少脂肪並增加肌肉量的效果。

Flavored Nanofiber Strips Loaded with Amoxicillin as an Alternative Method for Treating Bacterial Infections in Children

Semisynthetic penicillin, Amoxicillin, is a broad-spectrum antibiotic that is widely used to treat bacterial infections in children suffering ear, nose, and throat infections, genitourinary tract infections, skin infections, and lower respiratory tract infections1. This antibiotic works against both gram-positive and gram-negative bacteria, such as Listeria monocytogenes, Haemophilus influenza, Streptococcus pneumonia , Streptococcus pyogene and Escherichia coli1,2. It shows antibacterial activity by inhibiting dd-transpeptidase, which maintains the integrity of the bacterial cell wall which results in bacterial cell death due to a fragile cell wall3. Nonadherence to medication was associated with 50% of drug-related hospitalizations in children4. In order to improve adherence and influence clinical outcome, it is important to acknowledge the importance of drug palatability to children4–6. The currently available liquid suspension form of this antibiotic is administered to patients through oral/GI routes. It is also available in capsules or tablets for adults7–9. In the gastrointestinal tract, the drug has to withstand variable pH conditions and enzymatic degradation , mucus and mucosal barriers to survive resulting in limiting drug bioavailability10,11. In addition to conventional drug delivery formulations, nanofibers can be used to deliver drugs orally, topically, and through buccal or transdermal routes12. Drug-loaded nanofibers offer many advantages as a delivery system, including their porous structure and their efficient delivery of various drugs and bioactive molecules including hydrophobic and hydrophilic drugs12–14. Considering that amoxicillin palatability can affect children patients’ compliance and due to the advantages of both nanofiber drug delivery system and drug delivery through buccal routes, hence, this project aims to prepare flavored electrospun nanofibers loaded with amoxicillin to mask the unpleasant taste of the drug for treating children with bacterial infection. Nanofibers loaded with amoxicillin can be applied between the child's gum and cheek, allowing the fibers to dissolve in mucus and penetrate directly into the bloodstream.

運用細胞水膠化技術製作微流道晶片進行抗原專一性T細胞之篩選 Flow-induced Mechanical Screening of Antigen Specific T cells with Biomimetic Microfluidic Chip

積極發展癌症相關治療策略極為重要,其中T細胞免疫療法(adaptive T cell therapy)是一深具臨床價值的選項。即是將T細胞自體內取出後並增殖到一定數量,而後將其回輸病人體內使得T細胞攻擊癌細胞。此方式關鍵的步驟在於必須要能夠篩選出足量的抗原專一性T細胞。現行主要的篩選方法雖然方便,但會誤捕不相關抗原專一性T細胞,降低治療效率。為解決此問題,本研究將利用水膠細胞技術,運用其完整保存生物膜的特性,模仿細胞膜之免疫突觸現象,搭配微流控晶片可控制流速改變沖刷力的特性,成功開發一可篩選親和力較高之T細胞微流道晶片。已在晶片內建立可置換任意抗原之水膠細胞單層,並以SIINFEKEL抗原作為模擬,達到極高之置換率。預期能在未來的研究中提升篩選專一性與數量,進而提升其臨床價值。

降脂轉肌–將脂肪轉變成肌肉的可能性探討

先前研究發現一種多元不飽和脂肪酸 15-keto-PGE2 能減少肌肉慢性發炎以及增加肌肉生長因子胰島素的敏感性,具有增加肌肉的潛力。我們探討此脂肪酸在小鼠中將脂肪組織轉成肌肉組織的可能性。 我們先以 15-keto-PGE2 治療肥胖型肌少症小鼠後,再以全基因組mRNA定序,發現在小鼠皮下脂肪中,肌肉特異基因表現量高度上升。透過基因表現路徑分析軟體 GSEA證實此脂肪酸會高度引發皮下脂肪中,與肌肉分化、肌肉收縮與肌肉結構相關的生物路徑。另外, 15-keto-PGE2 也可以誘導脂肪前驅細胞3T3-L1中與肌肉生成相關的基因表現。 最後,我們發現以 15-keto-PGE2 治療的老年肥胖型肌少症小鼠,體重、血糖、脂肪比例下降,肌肉質量及力量上升,證實了它在體內同時減少脂肪並增加肌肉量的效果。

吲哚類化合物抑制神經膠質母細胞瘤及癌幹細胞之潛力

癌症幹細胞被認為是癌症會復發的主因,本研究著眼於探討新合成吲哚類化合物對癌細胞及癌幹細胞的效應與可能的作用機制。透過體外細胞實驗,我們使用不同神經膠質母細胞瘤細胞株,評估化合物對細胞增殖、存活和凋亡的作用。接著以類癌幹細胞球篩檢評估化合物對癌症幹細胞的影響。研究結果顯示,該化合物對神經膠質母細胞瘤及其癌幹細胞皆有一定程度的抑制效果。 同時,透過分子生物學技術,研究化合物的分子作用機制,結果顯示化合物能對細胞生長和凋亡的路徑產生影響。研究結果有望提供對候選抗癌藥物在細胞水平的效能、選擇性以及對癌幹細胞的特異性反應的深入理解。 期望本研究成果可為癌症治療藥物的開發提供重要參考,並促使對癌症治療新方法的探索。這將有助於確定更具潛力的藥物候選者,為癌症治療領域帶來更具前瞻性的解決方案。

YKT6與癌纖維母細胞的「泌」密關係

本研究以人類肺癌A549細胞株和纖維母細胞模擬體內腫瘤微環境,挖掘纖維母細胞如何促進癌細胞的生長。從病人的正常和癌組織提取癌相關纖維母細胞(cancer-associated fibroblasts, CAFs) 和 正常纖維母細胞(Normal Fibroblasts, NFs),經過基因序列一對對作分析,開發新的治療策略和潛在的靶點。利用核糖核酸定序(RNA-Seq)分析發現CAFs會比NFs分泌更多SNARE 蛋白 YKT6,而更深入地探究獲悉YKT6會透過活化YKT6+CAFs途徑促進肺癌A549細胞惡化,此惡化過程包括誘導及提升癌細胞的生殖(proliferation),轉移(migration)和入侵(invasion)能力。 此外,在 CAFs 中敲除 YKT6基因,減弱CAFs 的外泌體(exosome)釋放,從而調節了其對肺癌細胞A549的腫瘤促進作用。本研究發現靶向YKT6並抑制外泌體分泌,從而降低CAFs對肺腺癌細胞的腫瘤支援功能可以為肺癌治療提供一種新的策略。

天狗現形劑-研發分辨四型登革病毒之抗原快篩試劑

登革熱(Dengue Fever)俗稱天狗熱,由登革病毒(Dengue virus; DENV)透過埃及斑蚊(Aedes aegypti)和白線斑蚊(Aedes albopictus)傳播並於熱帶及溫帶地區肆虐。每年全球約有五千萬至一億人感染登革病毒,約有五十萬人因登革出血熱(Dengue Hemorrhagic Fever; DHF)而住院。登革熱主要流行於熱帶及亞熱帶地區,尤其是與台灣頻繁往來的東南亞國家,其中一型與二型在東南亞國家病例數較高。當不同血清型登革病毒交錯感染容易引發登革出血熱以及登革休克症候群(Dengue Shock Syndrome),對公共衛生構成重大挑戰。因此研發可快速辨識四型登革病毒之檢驗試劑將有助於提升臨床診斷與後續治療。本報告的研究結果有三項,(1)四型登革病毒NS1 (Nonstructural Protein 1)蛋白的表達與純化:利用分子生物技術成功構建載體並純化四型NS1蛋白,作為免疫原蛋白用於小鼠免疫;(2)單株抗體的篩選與親和性測試:經三次免疫後,利用小鼠脾臟細胞與骨髓瘤細胞進行融合,篩選並生產針對NS1蛋白的單株抗體(monoclonal antibody, mAb),並通過酵素結合免疫吸附法(Enzyme-linked immunosorbent assay, ELISA)驗證抗體的專一性及親和力;(3)快篩試劑的開發與性能測試:運用側向流體免疫層析法(lateral flow immunoassay)設計並組裝快篩試劑,先以重組蛋白進行初步測試,隨後將使用去活性病毒進行性能驗證,確保試劑的靈敏度與準確性。期望這些研究成果有助於台灣登革熱防疫且為臨床治療提供參考。

Eradicating Cystic Fibrosis Biofilms by a Novel Non-Toxic, Multi-Pathway Salicylate Therapy

1.1. Cystic Fibrosis Biofilms Biofilms are bacterial aggregates in a matrix of polysaccharides, proteins and nucleic acids (Donlan, 2002). They account for 80% of all chronic infections and cause over 500,000 deaths annually. Cystic fibrosis (CF) is a genetic disorder characterized by mucus accumulation in the respiratory tracts (Morrison et al., 2020). This impairs mucociliary clearance, allowing chronic colonization by bacterial biofilms, leading to fatal respiratory failure, lung scarring, and necrosis of pulmonary epithelial tissues (Martin et al., 2021). 1.2. Obstacles in Current Treatments Three major therapies are used against CF biofilms: (1) aminoglycoside antibiotics like tobramycin, (2)non-aminoglycoside antibiotics such as ciprofloxacin and vancomycin, and (3) non-antibiotic therapies including flushing, chlorination, and ultraviolet disinfection. These have two major flaws. First, they are cytotoxic; 30% of patients experience acute kidney injury after three days of intravenous aminoglycoside therapy (Joyce et al., 2017). Furthermore, non-aminoglycoside therapies can cause phospholipid buildup in lysosomes of proximal tubule epithelial cells, accounting for 10-20% of acute renal failure cases. Second, antibiotic resistance due to horizontal gene transfer and mutations has significantly reduced treatment effectiveness. Therefore, cystic fibrosis biofilms remain a critical threat with few effective treatments. 1.3. Salicylate Derivatives This project tackled this issue using an innovative non-antibiotic approach with salicylate derivatives. Salicylates, a class of benzoic acids—benzene-based carboxylic acids (Figure 1)—used in painkillers and blood thinners, were investigated for their antibiofilm potential through a 3-step process: 1. Literature review: Identified three key biofilm therapeutic targets: quorum sensing, bacterial adhesion, and cell motility. Disrupting these pathways would result in biofilm eradication. 2. Molecule Identification: Recognized key molecules in each pathway: LasR, adhesins, and flagellin. Inhibiting these molecules would disrupt the pathways. 3. Screening: Found that salicylates could inhibit the identified molecules, though they had never been tested against cystic fibrosis biofilms.

Utilizing Flavonoids From the Invasive Species Pilea Melastomoides and Daucus Carota as Well as the Protein PTK-2 to Create a Skin Gel Aimed for Burn Wound Healing.

Burns are a major global health concern especially in developing countries like 印尼, where southeast asian women experience the highest burn incidents globally. Burns can cause severe physical and psychological impacts, with treatments that are critical to reduce complications. This study focuses on the development of organic, cost-effective burn gels using flavonoid compounds which are Quercetin and Myrecetin which are taken from pilea melastomoides leaves, a wild 印尼n plant and carrot (Daucus Carota). These skin extracts aim to accelerate wound healing, minimize pain and prevent infection. The gel formation involves extracting active compounds using 96% ethanol as it has been effectively used for extracting a wide range of bioactive compounds to preserve their quality by preventing microbial contamination, and ensures a high yield of active ingredients suitable for topical applications. Then it goes through a process of Phytochemical screening to confirm the presence of flavonoids by using the Shinoda test. The formulation process included dissolving the HPC-m (Hydroxypropyl Cellulose) as a gelling agent, then adding plant extracts (pilea melastomoides leaves and carrot), as well as combining other ingredients such as propylene glycol, sodium benzoate, sodium metabisulfite, and disodium EDTA. The gel was stirred thoroughly to ensure uniformity and left at room temperature for 48 hours to attain the required consistency. The gel that was formatted went under various quality assessments, first being organoleptic testing. This test is used to evaluate its physical characteristics which includes color aroma, and consistency which confirms a stable dark green appearance and a natural strong scent from the plant extracts. The homogeneity test is used to verify the uniformity distribution of active compounds across the gel, to ensure a consistent efficacy. The pH test showed the gel’s acidity level which remained the safe range for skin application. Additionally, the spreading ability test demonstrated the gel’s excellent application properties, with consistent results across trials. Subsequently, the in silico analysis was conducted to predict the behaviour of specific flavonoid compounds used which is the myricetin and quercetin, highlighting their potential anti-inflammatory and antimicrobial activities. Further bacterial contamination tests confirmed the gel’s antimicrobial efficacy, reducing the risk of infection in wounds. This study demonstrates that the gel, formulated with pilea melastomoides leaves and carrot skin extracts, effectively utilizes flavonoids and other phytochemicals to reduce inflammation, promote tissue regeneration and retain moisture, which fosters an optimal condition for wound healing. This organic and sustainable burn treatment utilizes locally sourced ingredients, providing a natural solution that speeds up recovery, reduces pain and prevents infections. The results highlight its significant potential for wider healthcare use, especially in resource-limited environments.

探討肝癌細胞中動力蛋白抑制對於癌症轉移的影響

肝細胞癌 (HCC) 為全球導致高死亡率的癌症之一,第一線標靶治療藥物 Sorafenib 雖能延長患者存活期,但其療效有限且伴隨嚴重副作用。在癌症中,中心體異常所導致的染色體變異是腫瘤發展的關鍵因素,而動力蛋白已知參與中心體裝配,且前人研究結果表明動力蛋白與肺癌、 HCC 等多種癌症有關連 。故本研究先透過基因表現資料庫分析,發現 HCC患者中的動力蛋白重鍊基因表現量大致顯著高於一般,後以 Ciliobrevin D 抑制三種 HCC 細胞株 Hep3B、HepG2、Huh-7 中的動力蛋白,並藉細胞存活率分析、遷移試驗與西方墨點法,探討抑制動力蛋白與 HCC 的關聯。據實驗結果,抑制動力蛋白後, Huh-7 的遷移速率減緩, 蛋白質表現量亦隨抑制劑濃度升高而降低。這表示抑制動力蛋白具有抑制肝癌細胞轉移的潛力,期未來能成為肝癌新的治療靶點。