利用 Verapamil 引發斑馬魚胚胎心衰竭模式並探討臨床心衰竭用藥 Dapagliflozin 和 Valsartan 之成效與機制
本研究利用 Verapamil 誘導斑馬魚胚胎心衰竭模式,並探討 Dapagliflozin 對斑馬魚胚胎表皮離子細胞的調控機制,以加深對 SGLT2 inhibitors 機制的了解。受精後第四天的斑馬魚在暴露於Verapamil 24小時後,除了抑制卵黃囊吸收以及造成心包膜水腫以外,對心臟整體功能(HR, EDV,ESV, SV, EF, CO)具負面影響。以粒線體染劑標記離子細胞,發現Verapamil使其密度上升,使用掃描式電子顯微鏡觀察,則可看到離子細胞頂端開口有明顯的萎縮,影響到正常功能。以抗體標記染色的方式檢測不同離子細胞亞型,顯示 Dapagliflozin 使富含 Na⁺-K⁺ ATPase 的 HR 細胞和富含 H⁺-ATPase 的 NaR 細胞密度上升。同時,心臟功能診斷標誌物的 mRNA 水平(naap, nppb,gata4, vmhc)暴露於Verapamil後上升,促進離子細胞代償性上調。
利用 Verapamil 引發斑馬魚胚胎心衰竭模式並探討臨床心衰竭用藥 Dapagliflozin 和 Valsartan 之成效與機制
本研究利用 Verapamil 誘導斑馬魚胚胎心衰竭模式,並探討 Dapagliflozin 對斑馬魚胚胎表皮離子細胞的調控機制,以加深對 SGLT2 inhibitors 機制的了解。受精後第四天的斑馬魚在暴露於Verapamil 24小時後,除了抑制卵黃囊吸收以及造成心包膜水腫以外,對心臟整體功能(HR, EDV,ESV, SV, EF, CO)具負面影響。以粒線體染劑標記離子細胞,發現Verapamil使其密度上升,使用掃描式電子顯微鏡觀察,則可看到離子細胞頂端開口有明顯的萎縮,影響到正常功能。以抗體標記染色的方式檢測不同離子細胞亞型,顯示 Dapagliflozin 使富含 Na⁺-K⁺ ATPase 的 HR 細胞和富含 H⁺-ATPase 的 NaR 細胞密度上升。同時,心臟功能診斷標誌物的 mRNA 水平(naap, nppb,gata4, vmhc)暴露於Verapamil後上升,促進離子細胞代償性上調。
KidneyLifePlus+ : Retinal Imaging Analysis for Kidney Disease Risk Assessment
Chronic kidney disease (CKD) represents a significant public health challenge, often referred to as a “silent disease” due to its asymptomatic progression during early stages (1–2). Consequently, most diagnoses occur during advanced stages (3 and beyond), where treatment options are more complex and outcomes are less favorable. Globally, CKD affects over 850 million individuals, with 434.3 million cases in Asia alone. Despite its prevalence, early-stage awareness remains alarmingly low, with only 5% of affected individuals aware of their condition. Existing screening methods are predominantly hospital-based, expensive, and time-intensive, limiting their accessibility, particularly in resource-constrained settings. This underscores an urgent need for more accessible and efficient diagnostic tools to enable early intervention. In response to this critical problem, we developed KidneyLifePlus+, an AI-powered platform that leverages advanced machine learning models, including U-net, ResNet-50, and YOLO v8, to analyze retinal images for early CKD detection. These models are integrated to ensure high screening accuracy by identifying subtle biomarkers indicative of CKD progression. Complementing the software, we designed proprietary hardware capable of capturing high-resolution retinal images, delivering performance comparable to hospital-grade equipment. By ensuring affordability and ease of use, the system extends screening capabilities beyond clinical environments, making it suitable for deployment in community healthcare settings. KidneyLifePlus+ addresses key limitations of traditional methods by offering a rapid, cost-effective, and highly accurate diagnostic solution. The platform’s potential to enhance early detection rates could significantly improve clinical outcomes and quality of life for CKD patients. Furthermore, this innovation contributes to global efforts to reduce the burden of CKD by promoting equitable access to diagnostic services, particularly in underserved regions.